Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Virol ; 98(2): e0138623, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38240593

RESUMEN

The Kaposi's sarcoma-associated herpesvirus (KSHV) genome consists of an approximately 140-kb unique coding region flanked by 30-40 copies of a 0.8-kb terminal repeat (TR) sequence. A gene enhancer recruits transcription-related enzymes by having arrays of transcription factor binding sites. Here, we show that KSHV TR possesses transcription regulatory function with latency-associated nuclear antigen (LANA). Cleavage under targets and release using nuclease demonstrated that TR fragments were occupied by LANA-interacting histone-modifying enzymes in naturally infected cells. The TR was enriched with histone H3K27 acetylation (H3K27Ac) and H3K4 tri-methylation (H3K4me3) modifications and also expressed nascent RNAs. The sites of H3K27Ac and H3K4me3 modifications were also conserved in the KSHV unique region among naturally infected primary effusion lymphoma cells. KSHV origin of lytic replication (Ori-Lyt) showed similar protein and histone modification occupancies with that of TR. In the Ori-Lyt region, the LANA and LANA-interacting proteins colocalized with an H3K27Ac-modified nucleosome along with paused RNA polymerase II. The KSHV transactivator KSHV replication and transcription activator (K-Rta) recruitment sites franked the LANA-bound nucleosome, and reactivation evicted the LANA-bound nucleosome. Including TR fragments in reporter plasmid enhanced inducible viral gene promoter activities independent of the orientations. In the presence of TR in reporter plasmids, K-Rta transactivation was drastically increased, while LANA acquired the promoter repression function. KSHV TR, therefore, functions as an enhancer for KSHV inducible genes. However, in contrast to cellular enhancers bound by multiple transcription factors, perhaps the KSHV enhancer is predominantly regulated by the LANA nuclear body.IMPORTANCEEnhancers are a crucial regulator of differential gene expression programs. Enhancers are the cis-regulatory sequences determining target genes' spatiotemporal and quantitative expression. Here, we show that Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeats fulfill the enhancer definition for KSHV inducible gene promoters. The KSHV enhancer is occupied by latency-associated nuclear antigen (LANA) and its interacting proteins, such as CHD4. Neighboring terminal repeat (TR) fragments to lytic gene promoters drastically enhanced KSHV replication and transcription activator and LANA transcription regulatory functions. This study, thus, proposes a new latency-lytic switch model in which TR accessibility to the KSHV gene promoters regulates viral inducible gene expression.


Asunto(s)
Herpesvirus Humano 8 , Proteínas Inmediatas-Precoces , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Histonas/genética , Histonas/metabolismo , Nucleosomas , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Latencia del Virus/genética , Antígenos Virales/genética , Antígenos Virales/metabolismo , Secuencias Repetidas Terminales/genética , Regulación Viral de la Expresión Génica
2.
PLoS Pathog ; 19(11): e1011771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934757

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismo , Infecciones por Herpesviridae/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Proteínas de Ciclo Celular/metabolismo
3.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33597212

RESUMEN

Studies on "hit-and-run" effects by viral proteins are difficult when using traditional affinity precipitation-based techniques under dynamic conditions, because only proteins interacting at a specific instance in time can be precipitated by affinity purification. Recent advances in proximity labeling (PL) have enabled identification of both static and dynamic protein-protein interactions. In this study, we applied a PL method by generating recombinant Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV, a gammaherpesvirus, uniquely encodes four interferon regulatory factors (IRF-1 to -4) that suppress host interferon responses, and we examined KSHV IRF-1 and IRF-4 neighbor proteins to identify cellular proteins involved in innate immune regulation. PL identified 213 and 70 proteins as neighboring proteins of viral IRF-1 (vIRF-1) and vIRF-4 during viral reactivation, and 47 proteins were shared between the two vIRFs; the list also includes three viral proteins, ORF17, thymidine kinase, and vIRF-4. Functional annotation of respective interacting proteins showed highly overlapping biological roles such as mRNA processing and transcriptional regulation by TP53. Innate immune regulation by these commonly interacting 44 cellular proteins was examined with small interfering RNAs (siRNAs), and the splicing factor 3B family proteins were found to be associated with interferon transcription and to act as suppressors of KSHV reactivation. We propose that recombinant mini-TurboID-KSHV is a powerful tool to probe key cellular proteins that play a role in KSHV replication and that selective splicing factors have a function in the regulation of innate immune responses.IMPORTANCE Viral protein interaction with a host protein shows at least two sides: (i) taking host protein functions for its own benefit and (ii) disruption of existing host protein complex formation to inhibit undesirable host responses. Due to the use of affinity precipitation approaches, the majority of studies have focused on how the virus takes advantage of the newly formed protein interactions for its own replication. Proximity labeling (PL), however, can also highlight transient and negative effects-those interactions which lead to dissociation from the existing protein complex. Here, we highlight the power of PL in combination with recombinant KSHV to study viral host interactions.


Asunto(s)
Biotinilación/métodos , Herpesvirus Humano 8/metabolismo , Factores Reguladores del Interferón/metabolismo , Proteómica , Sarcoma de Kaposi/virología , Proteínas Virales/metabolismo , Regulación Viral de la Expresión Génica , Células HEK293 , Interacciones Microbiota-Huesped , Humanos , Replicación Viral
4.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969436

RESUMEN

Molecular mechanisms of Kaposi's sarcoma-associated herpesvirus (KSHV) reactivation have been studied primarily by measuring the total or average activity of an infected cell population, which often consists of a mixture of both nonresponding and reactivating cells that in turn contain KSHVs at various stages of replication. Studies on KSHV gene regulation at the individual cell level would allow us to better understand the basis for this heterogeneity, and new preventive measures could be developed based on findings from nonresponding cells exposed to reactivation stimuli. Here, we generated a recombinant reporter virus, which we named "Rainbow-KSHV," that encodes three fluorescence-tagged KSHV proteins (mBFP2-ORF6, mCardinal-ORF52, and mCherry-LANA). Rainbow-KSHV replicated similarly to a prototype reporter-KSHV, KSHVr.219, and wild-type BAC16 virus. Live imaging revealed unsynchronized initiation of reactivation and KSHV replication with diverse kinetics between individual cells. Cell fractionation revealed temporal gene regulation, in which early lytic gene expression was terminated in late protein-expressing cells. Finally, isolation of fluorescence-positive cells from nonresponders increased dynamic ranges of downstream experiments 10-fold. Thus, this study demonstrates a tool to examine heterogenic responses of KSHV reactivation for a deeper understanding of KSHV replication.IMPORTANCE Sensitivity and resolution of molecular analysis are often compromised by the use of techniques that measure the ensemble average of large cell populations. Having a research tool to nondestructively identify the KSHV replication stage in an infected cell would not only allow us to effectively isolate cells of interest from cell populations but also enable more precise sample selection for advanced single-cell analysis. We prepared a recombinant KSHV that can report on its replication stage in host cells by differential fluorescence emission. Consistent with previous host gene expression studies, our experiments reveal the highly heterogenic nature of KSHV replication/gene expression at individual cell levels. The utilization of a newly developed reporter-KSHV and initial characterization of KSHV replication in single cells are presented.


Asunto(s)
Regulación Viral de la Expresión Génica/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Replicación Viral/genética , Línea Celular , Fluorescencia , Genes Virales/genética , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas Virales/genética
5.
J Virol ; 91(11)2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331082

RESUMEN

Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional "factories," which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of "viral transcriptional factories" decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an "all-in-one" factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells.IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression.


Asunto(s)
Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Proteínas Inmediatas-Precoces/genética , ARN Polimerasa II/metabolismo , Sarcoma de Kaposi/virología , Transcripción Genética , Antígenos Virales/genética , Núcleo Celular/virología , Genoma Viral , Herpesvirus Humano 8/fisiología , Interacciones Huésped-Patógeno/genética , Humanos , Imagenología Tridimensional , Intrones , Proteínas Virales/genética , Latencia del Virus/genética , Replicación Viral
6.
J Virol ; 88(3): 1843-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24257619

RESUMEN

Latent Kaposi's sarcoma-associated herpesvirus (KSHV) episomes are coated with viral latency-associated nuclear antigen (LANA). In contrast, LANA rapidly disassociates from episomes during reactivation. Lytic KSHV expresses polyadenylated nuclear RNA (PAN RNA), a long noncoding RNA (lncRNA). We report that PAN RNA promotes LANA-episome disassociation through an interaction with LANA which facilitates LANA sequestration away from KSHV episomes during reactivation. These findings suggest that KSHV may have evolved an RNA aptamer to regulate latent protein function.


Asunto(s)
Antígenos Virales/metabolismo , Infecciones por Herpesviridae/virología , Herpesvirus Humano 8/fisiología , Proteínas Nucleares/metabolismo , ARN Largo no Codificante/metabolismo , ARN Viral/metabolismo , Antígenos Virales/genética , Herpesvirus Humano 8/genética , Humanos , Proteínas Nucleares/genética , ARN Largo no Codificante/genética , ARN Viral/genética , Activación Viral
7.
PLoS Pathog ; 9(8): e1003506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23990779

RESUMEN

The small ubiquitin-like modifier (SUMO) is a protein that regulates a wide variety of cellular processes by covalent attachment of SUMO moieties to a diverse array of target proteins. Sumoylation also plays an important role in the replication of many viruses. Previously, we showed that Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO-ligase, K-bZIP, which catalyzes sumoylation of host and viral proteins. We report here that this virus also encodes a gene that functions as a SUMO-targeting ubiquitin-ligase (STUbL) which preferentially targets sumoylated proteins for degradation. K-Rta, the major transcriptional factor which turns on the entire lytic cycle, was recently found to have ubiquitin ligase activity toward a selected set of substrates. We show in this study that K-Rta contains multiple SIMs (SUMO interacting motif) and binds SUMOs with higher affinity toward SUMO-multimers. Like RNF4, the prototypic cellular STUbL, K-Rta degrades SUMO-2/3 and SUMO-2/3 modified proteins, including promyelocytic leukemia (PML) and K-bZIP. PML-NBs (nuclear bodies) or ND-10 are storage warehouses for sumoylated proteins, which negatively regulate herpesvirus infection, as part of the intrinsic immune response. Herpesviruses have evolved different ways to degrade or disperse PML bodies, and KSHV utilizes K-Rta to inhibit PML-NBs formation. This process depends on K-Rta's ability to bind SUMO, as a K-Rta SIM mutant does not effectively degrade PML. Mutations in the K-Rta Ring finger-like domain or SIM significantly inhibited K-Rta transactivation activity in reporter assays and in the course of viral reactivation. Finally, KSHV with a mutation in the Ring finger-like domain or SIM of K-Rta replicates poorly in culture, indicating that reducing SUMO-conjugates in host cells is important for viral replication. To our knowledge, this is the first virus which encodes both a SUMO ligase and a SUMO-targeting ubiquitin ligase that together may generate unique gene regulatory programs.


Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transactivadores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Replicación Viral/fisiología , Secuencias de Aminoácidos , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Células HEK293 , Infecciones por Herpesviridae/enzimología , Infecciones por Herpesviridae/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína de la Leucemia Promielocítica , Estructura Terciaria de Proteína , Proteolisis , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Transactivadores/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinas/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
8.
J Virol ; 87(12): 6782-93, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23576503

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) latent genomes are tethered to host histones to form a minichromosome also known as an "episome." Histones, which are core components of chromatin, are heavily modified by various histone-targeting enzymes. Posttranslational modifications of histones significantly influence accessibility of transcriptional factors and thus have profound effects on gene expression. Recent studies showed that epigenetic marks on the KSHV episome are well organized, exemplified by the absence of histone H3 lysine 9 (H3K9) methylation, a heterochromatic histone mark, from immediate early and latent gene promoters in naturally infected cells. The present study revealed a mechanistic insight into KSHV epigenome regulation via a complex consisting of LANA and the H3K9me1/2 histone demethylase JMJD1A/KDM3A. This complex was isolated from HeLa cell nuclear extracts stably expressing LANA and was verified by coimmunoprecipitation analyses and with purified proteins. LANA recruitment sites on the KSHV genome inversely correlated with H3K9me2 histone marks in naturally infected cells, and methylation of H3K9 significantly inhibited LANA binding to the histone H3 tail. Chromatin immunoprecipitation coupled with KSHV tiling arrays identified the recruitment sites of the complex, while depletion of LANA expression or overexpression of a KDM3A binding-deficient mutant decreased KDM3A recruitment to the KSHV genome. Finally, ablation of KDM3A expression from latently KSHV-infected cells significantly inhibited KSHV gene expression, leading to decreased KSHV replication during reactivation. Taken together, our results suggest that LANA may play a role in regulation of epigenetic marks on the KSHV genome, which is in part through association with the histone demethylase KDM3A.


Asunto(s)
Antígenos Virales/metabolismo , Epigénesis Genética , Regulación Viral de la Expresión Génica/genética , Genoma Viral , Herpesvirus Humano 8/fisiología , Histona Demetilasas con Dominio de Jumonji/metabolismo , Proteínas Nucleares/metabolismo , Antígenos Virales/genética , Inmunoprecipitación de Cromatina , Replicación del ADN , Células HEK293 , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Histonas/genética , Histonas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Latencia del Virus
9.
J Biol Chem ; 287(8): 5806-18, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22179613

RESUMEN

The Kaposi sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) is a multifunctional protein with roles in gene regulation and maintenance of viral latency. Post-translational modification of LANA is important for functional diversification. Here, we report that LANA is subject to arginine methylation by protein arginine methyltransferase 1 in vitro and in vivo. The major arginine methylation site in LANA was mapped to arginine 20. This site was mutated to either phenylalanine (bulky hydrophobic, constitutive methylated mimetic) or lysine (positively charged, non-arginine methylatable) residues. The significance of the methylation in LANA function was examined in both the isolated form and in the context of the viral genome through the generation of recombinant KSHV. In addition, authentic LANA binding sites on the KSHV episome in naturally infected cells were identified using a whole genome KSHV tiling array. Although mutation of the methylation site resulted in no significant difference in KSHV LANA subcellular localization, we found that the methylation mimetic mutation resulted in augmented histone binding in vitro and increased LANA occupancy at identified LANA target promoters in vivo. Moreover, a cell line carrying the methylation mimetic mutant KSHV showed reduced viral gene expression relative to controls both in latency and in the course of reactivation. These results suggest that residue 20 is important for modulation of a subset of LANA functions and properties of this residue, including the hydrophobic character induced by arginine methylation, may contribute to the observed effects.


Asunto(s)
Antígenos Virales/metabolismo , Herpesvirus Humano 8/metabolismo , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Represoras/metabolismo , Antígenos Virales/química , Antígenos Virales/genética , Arginina/metabolismo , Secuencia de Bases , Sitios de Unión , Cromatina/metabolismo , Ingeniería Genética , Genoma Viral/genética , Células HEK293 , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Histonas/química , Histonas/metabolismo , Humanos , Espacio Intracelular/metabolismo , Metilación , Mutación , Proteínas Nucleares/química , Proteínas Nucleares/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Transporte de Proteínas , Transcripción Genética , Latencia del Virus
10.
Proc Natl Acad Sci U S A ; 107(21): 9671-6, 2010 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-20457893

RESUMEN

Localized chromatin modifications of histone tails play an important role in regulating gene transcription, and aberration of these processes leads to carcinogenesis. Methylated histone lysine residues, a key player in chromatin remodeling, are demethylated by the JmjC class of enzymes. Here we show that JMJD5 (now renamed KDM8), a JmjC family member, demethylates H3K36me2 and is required for cell cycle progression. Chromatin immunoprecipitation assays applied to human genome tiling arrays in conjunction with RNA microarray revealed that KDM8 occupies the coding region of cyclin A1 and directly regulates transcription. Mechanistic analyses showed that KDM8 functioned as a transcriptional activator by inhibiting HDAC recruitment via demethylation of H3K36me2, an epigenetic repressive mark. Tumor array experiments revealed KDM8 is overexpressed in several types of cancer. In addition, loss-of-function studies in MCF7 cells leads to cell cycle arrest. These studies identified KDM8 as an important cell cycle regulator.


Asunto(s)
Proliferación Celular , Ciclina A1/metabolismo , Histona Demetilasas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Sistemas de Lectura Abierta , Acetilación , Línea Celular Tumoral , Ciclina A1/genética , Regulación Neoplásica de la Expresión Génica , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Neoplasias/genética , Interferencia de ARN , Transcripción Genética
11.
bioRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503036

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and possesses greater risks of having other complications, which include malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol-Linked Alkylation for the Metabolic Sequencing and Cleavage Under Target & Release Using Nuclease analysis, we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNAPII with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitor, OTX015, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.

12.
Cell Rep ; 39(6): 110788, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545047

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.


Asunto(s)
Herpesvirus Humano 8 , ARN Largo no Codificante , Sarcoma de Kaposi , Antígenos Virales/genética , Antígenos Virales/metabolismo , Cromosomas/metabolismo , Herpesvirus Humano 8/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Plásmidos , ARN Largo no Codificante/genética , Microambiente Tumoral , Latencia del Virus/genética
13.
Commun Biol ; 4(1): 1330, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857874

RESUMEN

In herpesvirus replicating cells, host cell gene transcription is frequently down-regulated because important transcriptional apparatuses are appropriated by viral transcription factors. Here, we show a small peptide derived from the Kaposi's sarcoma-associated herpesvirus transactivator (K-Rta) sequence, which attenuates cellular MYC expression, reduces cell proliferation, and selectively kills cancer cell lines in both tissue culture and a xenograft tumor mouse model. Mechanistically, the peptide functions as a decoy to block the recruitment of coactivator complexes consisting of Nuclear receptor coactivator 2 (NCOA2), p300, and SWI/SNF proteins to the MYC promoter in primary effusion lymphoma cells. Thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq) with target-transcriptional analyses further confirm that the viral peptide directly attenuates MYC and MYC-target gene expression. This study thus provides a unique tool to control MYC activation, which may be used as a therapeutic payload to treat MYC-dependent diseases such as cancers and autoimmune diseases.


Asunto(s)
Herpesvirus Humano 8/fisiología , Leucemia/fisiopatología , Linfoma/fisiopatología , Proteínas Proto-Oncogénicas c-myc/genética , Transactivadores/genética , Línea Celular Tumoral , Proliferación Celular , Herpesvirus Humano 8/química , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transactivadores/metabolismo , Células Tumorales Cultivadas
14.
J Virol ; 83(9): 4435-46, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19244329

RESUMEN

Successful viral replication is dependent on a conducive cellular environment; thus, viruses must be sensitive to the state of their host cells. We examined the idea that an interplay between viral and cellular regulatory factors determines the switch from Kaposi's sarcoma-associated herpesvirus (KSHV) latency to lytic replication. The immediate-early gene product K-Rta is the first viral protein expressed and an essential factor in reactivation; accordingly, this viral protein is in a key position to serve as a viral sensor of cellular physiology. Our approach aimed to define a host transcription factor, i.e., host sensor, which modulates K-Rta activity on viral promoters. To this end, we developed a panel of reporter plasmids containing all 83 putative viral promoters for a comprehensive survey of the response to both K-Rta and cellular transcription factors. Interestingly, members of the NF-kappaB family were shown to be strong negative regulators of K-Rta transactivation for all but two viral promoters (Ori-RNA and K12). Recruitment of K-Rta to the ORF57 and K-bZIP promoters, but not the K12 promoter, was significantly impaired when NF-kappaB expression was induced. Many K-Rta-responsive promoters modulated by NF-kappaB contain the sequence of the RBP-Jkappa binding site, a major coactivator which anchors K-Rta to target promoters via consensus motifs which overlap with that of NF-kappaB. Gel shift assays demonstrated that NF-kappaB inhibits the binding of RBP-Jkappa and forms a complex with RBP-Jkappa. Our results support a model in which a balance between K-Rta/RBP-Jkappa and NF-kappaB activities determines KSHV reactivation. An important feature of this model is that the interplay between RBP-Jkappa and NF-kappaB on viral promoters controls viral gene expression mediated by K-Rta.


Asunto(s)
Regulación hacia Abajo , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/metabolismo , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/antagonistas & inhibidores , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , FN-kappa B/metabolismo , Transactivadores/metabolismo , Latencia del Virus , Línea Celular , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Humanos , Proteínas Inmediatas-Precoces/genética , FN-kappa B/genética , Regiones Promotoras Genéticas/genética , Transactivadores/genética , Activación Viral
15.
Mol Cell Biol ; 35(1): 238-48, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25348716

RESUMEN

The retinoblastoma protein (pRb/p105) tumor suppressor plays a pivotal role in cell cycle regulation by blockage of the G1-to-S-phase transition. pRb tumor suppressor activity is governed by a variety of posttranslational modifications, most notably phosphorylation by cyclin-dependent kinase (Cdk) complexes. Here we report a novel regulation of pRb through protein arginine methyltransferase 4 (PRMT4)-mediated arginine methylation, which parallels phosphorylation. PRMT4 specifically methylates pRb at the pRb C-terminal domain (pRb C(term)) on arginine (R) residues R775, R787, and R798 in vitro and R787 in vivo. Arginine methylation is important for efficient pRb C(term) phosphorylation, as manifested by the reduced phosphorylation of a methylation-impaired mutant, pRb (R3K). A methylmimetic form of pRb, pRb (R3F), disrupts the formation of the E2F-1/DP1-pRb complex in cells as well as in an isolated system. Finally, studies using a Gal4-E2F-1 reporter system show that pRb (R3F) expression reduces the ability of pRb to repress E2F-1 transcriptional activation, while pRb (R3K) expression further represses E2F-1 transcriptional activation relative to that for cells expressing wild-type pRb. Together, our results suggest that arginine methylation negatively regulates the tumor suppressor function of pRb during cell cycle control, in part by creating a better substrate for Cdk complex phosphorylation and disrupting the interaction of pRb with E2F-1.


Asunto(s)
Arginina/metabolismo , Factor de Transcripción E2F1/metabolismo , Regulación de la Expresión Génica , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteína de Retinoblastoma/metabolismo , Ciclo Celular , Línea Celular Tumoral , Células HEK293 , Humanos , Metilación , Mutación , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo
16.
Virology ; 387(1): 76-88, 2009 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-19269659

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma. K-Rta and K-bZIP are two major viral transcription factors that control reactivation of this virus. Here we report a genome-wide analysis of transcriptional capacity by evaluation of a comprehensive library of 83 putative KSHV promoters. In reporter assays, 34 viral promoters were activated by K-Rta, whereas K-bZIP activated 21 promoters. When K-Rta and K-bZIP were combined, 3 K-Rta responsive promoters were repressed by K-bZIP. The occupancy of K-Rta and K-bZIP across KSHV promoters was analyzed by chromatin immunoprecipitation with a viral promoter-chip in BCBL-1 cells. In addition, acetylation of local histones was examined to determine accessibility of promoters during latency and reactivation. Finally, 10 promoters were selected to study the dynamics of transcription factor recruitment. This study provides a comprehensive overview of the responsiveness of KSHV promoters to K-Rta and K-bZIP, and describes key chromatin changes during viral reactivation.


Asunto(s)
Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Regiones Promotoras Genéticas/fisiología , Transactivadores/fisiología , Activación Viral , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Línea Celular , ADN Viral/genética , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/genética , Humanos , Transactivadores/química , Transactivadores/metabolismo , Activación Transcripcional , Replicación Viral
17.
J Virol ; 81(3): 1072-82, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17108053

RESUMEN

The oncogenic herpesvirus, Kaposi's sarcoma-associated herpesvirus, also identified as human herpesvirus 8, contains genes producing proteins that control transcription and influence cell signaling. Open reading frame 36 (ORF36) of this virus encodes a serine/threonine protein kinase, which is designated the viral protein kinase (vPK). Our recent efforts to elucidate the role of vPK in the viral life cycle have focused on identifying viral protein substrates and determining the effects of vPK-mediated phosphorylation on specific steps in viral replication. The vPK gene was transcribed into 4.2-kb and 3.6-kb mRNAs during the early and late phases of viral reactivation. vPK is colocalized with viral DNA replication/transcription compartments as marked by a polymerase processivity factor, and K-bZIP, a protein known to bind the viral DNA replication origin (Ori-Lyt) and to regulate viral transcription. The vPK physically associated with and strongly phosphorylated K-bZIP at threonine 111, a site also recognized by the cyclin-dependent kinase Cdk2. Both K-bZIP and vPK were corecruited to viral promoters targeted by K-bZIP as well as to the Ori-Lyt region. Phosphorylation of K-bZIP by vPK had a negative impact on K-bZIP transcription repression activity. The extent of posttranslational modification of K-bZIP by sumoylation, a process that influences its repression function, was decreased by vPK phosphorylation at threonine 111. Our data thus identify a new role of vPK as a modulator of viral transcription.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Herpesvirus Humano 8/enzimología , Proteínas Quinasas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Virales/metabolismo , Línea Celular , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8/metabolismo , Humanos , Proteínas Virales/química , Proteínas Virales/genética
18.
J Biol Chem ; 280(11): 10827-33, 2005 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-15640154

RESUMEN

The androgen receptor (AR) dynamically assembles and disassembles multicomponent receptor complexes in order to respond rapidly and reversibly to fluctuations in androgen levels. We are interested in identifying the basal factors that compose the AR aporeceptor and holoreceptor complexes and impact the transcriptional process. Using tandem mass spectroscopy analysis, we identified the trimeric DNA-dependent protein kinase (DNA-PK) complex as the major AR-interacting proteins. AR directly interacts with both Ku70 and Ku80 in vivo and in vitro, as shown by co-immunoprecipitation, glutathione S-transferase pull-down, and Sf9 cell/baculovirus expression. The interaction was localized to the androgen receptor ligand binding domain and is independent of DNA interactions. Ku interacts with AR in the cytoplasm and nucleus regardless of the presence or absence of androgen. Ku acts as a coactivator of AR activity in a luciferase reporter assay employing both Ku-defective cells and Ku small interfering RNA knock-down in a prostate cancer cell line. DNA-PK catalytic subunit (DNA-PKcs) also acts as a coactivator of androgen receptor activity in a luciferase reporter assay employing DNA-PKcs defective cells. AR nuclear translocation is not affected in Ku defective cells, implying Ku functionality may be mainly nuclear. Chromatin immunoprecipitation experiments demonstrated that both Ku70 and Ku80 interact with the prostate-specific antigen promoter in an androgen-dependant manner. Finally, in vitro transcription assays demonstrated Ku involvement in transcriptional recycling with androgen dependent promoters.


Asunto(s)
Antígenos Nucleares/fisiología , Proteínas de Unión al ADN/fisiología , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transcripción Genética , Andrógenos/metabolismo , Animales , Antígenos Nucleares/química , Antígenos Nucleares/metabolismo , Línea Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Cromatina/metabolismo , Inmunoprecipitación de Cromatina , Citoplasma/metabolismo , ADN/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Poliacrilamida , Genes Reporteros , Glutatión Transferasa/metabolismo , Humanos , Inmunoprecipitación , Insectos , Autoantígeno Ku , Ligandos , Luciferasas/metabolismo , Masculino , Espectrometría de Masas , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal
19.
J Virol ; 77(2): 1441-51, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12502859

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is a human gammaherpesvirus that has been implicated in the pathogenesis of Kaposi's sarcoma and B-cell neoplasms. The genomic organization of KSHV is similar to that of Epstein-Barr virus (EBV). EBV encodes two transcriptional factors, Rta and Zta, which functionally interact to transactivate EBV genes during replication and reactivation from latency. KSHV encodes a basic leucine zipper protein (K-bZIP), a homologue of EBV Zta, and K-Rta, the homologue of EBV Rta. EBV Rta and Zta are strong transcriptional transactivators. Although there is ample evidence that K-Rta is a potent transactivator, the role of K-bZIP as a transcriptional factor is much less clear. In this study, we report that K-bZIP modulates K-Rta function. We show that K-bZIP directly interacts with K-Rta in vivo and in vitro. This association is specific, requiring the basic domain (amino acids 122 to 189) of K-bZIP and a specific region (amino acids 499 to 550) of K-Rta, and can be detected with K-bZIP and K-Rta endogenously expressed in BCBL-1 cells treated with tetradecanoyl phorbol acetate. The functional relevance of this association was revealed by the observation that K-bZIP represses the transactivation of the ORF57 promoter by K-Rta in a dose-dependent manner. K-bZIP lacking the interaction domain fails to repress K-Rta-mediated transactivation; this finding attests to the specificity of the repression. Interestingly, this repression is not observed for the promoter of polyadenylated nuclear (PAN) RNA, another target of K-Rta; thus, repression is promoter dependent. Finally, we provide evidence that the modulation of K-Rta by K-bZIP also occurs in vivo during reactivation of the viral genome in BCBL-1 cells. When K-bZIP is overexpressed in BCBL-1 cells, the level of expression of ORF57 but not PAN RNA is repressed. These data support the model that one function of K-bZIP is to modulate the activity of the transcriptional transactivator K-Rta.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Herpesvirus Humano 8/metabolismo , Proteínas Inmediatas-Precoces/fisiología , Regiones Promotoras Genéticas , Transactivadores/fisiología , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Proteínas Virales/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Línea Celular , Cartilla de ADN , Replicación del ADN , ADN Viral/biosíntesis , Proteínas de Unión al ADN/metabolismo , Factores de Unión a la G-Box , Herpesvirus Humano 8/crecimiento & desarrollo , Herpesvirus Humano 8/fisiología , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Unión Proteica , Transactivadores/química , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Activación Viral , Replicación Viral
20.
J Virol ; 77(17): 9652-61, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12915577

RESUMEN

In order to cope with hostile host environments, many viruses have developed strategies to perturb the cellular machinery to suit their replication needs. Some herpesvirus genes protect cells from undergoing apoptosis to prolong the lives of infected cells, while others, such as Epstein-Barr virus Zta, slow down the G(1)/S transition phase to allow ample opportunity for transcription and translation of viral genes before the onset of cellular genomic replication. In this study, we investigated whether Kaposi's sarcoma-associated herpesvirus (KSHV) K-bZIP, a homologue of the Epstein-Barr virus transcription factor BZLF1 (Zta), plays a role in cell cycle regulation. Here we show that K-bZIP physically associates with cyclin-CDK2 and downmodulates its kinase activity. The association can be detected in the natural environment of KSHV-infected cells without artificial overexpression of either component. With purified protein, it can be shown that the interaction between K-bZIP and cyclin-CDK2 is direct and that K-bZIP alone is sufficient to inhibit CDK2 activity. The interacting domain of K-bZIP has been mapped to the basic region. The result of these associations is a prolonged G(1) phase, accompanied by the induction of p21 and p27 in a naturally infected B-cell line. Thus, in addition to the previously described transcription and genome replication functions, a new role of K-bZIP in KSHV replication is identified in this report.


Asunto(s)
Quinasas CDC2-CDC28 , Proteínas Portadoras/fisiología , Ciclo Celular/fisiología , Quinasas Ciclina-Dependientes/fisiología , Herpesvirus Humano 8/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Virales/fisiología , Linfocitos B/citología , Linfocitos B/metabolismo , Linfocitos B/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Línea Celular , Quinasa 2 Dependiente de la Ciclina , Fase G1/fisiología , Expresión Génica , Genes Virales , Células HeLa , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Represoras , Eliminación de Secuencia , Transfección , Proteínas Virales/química , Proteínas Virales/genética , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA