Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Med ; 13(8): 952-61, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17660828

RESUMEN

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart. Transforming growth factor-beta1 (TGF-beta1) induced endothelial cells to undergo EndMT, whereas bone morphogenic protein 7 (BMP-7) preserved the endothelial phenotype. The systemic administration of recombinant human BMP-7 (rhBMP-7) significantly inhibited EndMT and the progression of cardiac fibrosis in mouse models of pressure overload and chronic allograft rejection. Our findings show that EndMT contributes to the progression of cardiac fibrosis and that rhBMP-7 can be used to inhibit EndMT and to intervene in the progression of chronic heart disease associated with fibrosis.


Asunto(s)
Diferenciación Celular , Fibrosis Endomiocárdica/patología , Células Endoteliales/patología , Mesodermo/patología , Animales , Células de la Médula Ósea/patología , Proteína Morfogenética Ósea 7 , Proteínas Morfogenéticas Óseas/farmacología , Proteínas Morfogenéticas Óseas/uso terapéutico , Línea Celular , Células Cultivadas , Enfermedad Crónica , Fibrosis Endomiocárdica/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Humanos , Células Madre Mesenquimatosas/patología , Mesodermo/efectos de los fármacos , Ratones , Ratones Transgénicos , Factor de Crecimiento Transformador beta/farmacología , Factor de Crecimiento Transformador beta/uso terapéutico , Factor de Crecimiento Transformador beta1/farmacología
2.
J Biol Chem ; 287(13): 9827-9834, 2012 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-22228770

RESUMEN

Insulin-like growth factor 1 (IGF1) promotes a physiological type of cardiac hypertrophy and has therapeutic effects in heart disease. Here, we report the relationship of IGF1 to GATA4, an essential transcription factor in cardiac hypertrophy and cell survival. In cultured neonatal rat ventricular myocytes, we compared the responses to IGF1 (10 nmol/liter) and phenylephrine (PE, 20 µmol/liter), a known GATA4 activator, in concentrations promoting a similar extent of hypertrophy. IGF1 and PE both increased nuclear accumulation of GATA4 and phosphorylation at Ser(105) (PE, 2.4-fold; IGF1, 1.8-fold; both, p < 0.05) and increased GATA4 DNA binding activity as indicated by ELISA and by chromatin IP of selected promoters. Although IGF1 and PE each activated GATA4 to the same degree, GATA4 knockdown by RNA interference only blocked hypertrophy by PE but not by IGF1. PE induction of a panel of GATA4 target genes (Nppa, Nppb, Tnni3, Myl1, and Acta1) was inhibited by GATA4 knockdown. In contrast, IGF1 regulated only Acta1 in a GATA4-dependent fashion. Consistent with the in vitro findings, Gata4 haploinsufficiency in mice did not alter cardiac structure, hyperdynamic function, or antifibrotic effects induced by myocardial overexpression of the IGF1 receptor. Our data indicate that GATA4 is activated by the IGF1 pathway, but although it is required for responses to pathological stimuli, it is not necessary for the effects of IGF1 on cardiac structure and function.


Asunto(s)
Cardiomegalia/metabolismo , Factor de Transcripción GATA4/metabolismo , Factor I del Crecimiento Similar a la Insulina/efectos adversos , Miocitos Cardíacos/metabolismo , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Factor de Transcripción GATA4/genética , Técnicas de Silenciamiento del Gen , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Noqueados , Miocitos Cardíacos/patología , Regiones Promotoras Genéticas/genética , Ratas , Ratas Wistar
3.
Cell Metab ; 6(4): 294-306, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17908558

RESUMEN

Physiological cardiac hypertrophy is associated with mitochondrial adaptations that are characterized by activation of PGC-1alpha and increased fatty acid oxidative (FAO) capacity. It is widely accepted that phosphatidylinositol 3-kinase (PI3K) signaling to Akt1 is required for physiological cardiac growth. However, the signaling pathways that coordinate physiological hypertrophy and metabolic remodeling are incompletely understood. We show here that activation of PI3K is sufficient to increase myocardial FAO capacity and that inhibition of PI3K signaling prevents mitochondrial adaptations in response to physiological hypertrophic stimuli despite increased expression of PGC-1alpha. We also show that activation of the downstream kinase Akt is not required for the mitochondrial adaptations that are secondary to PI3K activation. Thus, in physiological cardiac growth, PI3K is an integrator of cellular growth and metabolic remodeling. Although PI3K signaling to Akt1 is required for cellular growth, Akt-independent pathways mediate the accompanying mitochondrial adaptations.


Asunto(s)
Cardiomegalia/enzimología , Mitocondrias/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Condicionamiento Físico Animal , Proteínas Proto-Oncogénicas c-akt/fisiología , Adaptación Fisiológica , Animales , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Isoenzimas/antagonistas & inhibidores , Ratones , Ratones Mutantes , Miocitos Cardíacos/enzimología , Oxidación-Reducción , Fosfatidilinositol 3-Quinasas/genética , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proteína Quinasa C/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
4.
Circ Res ; 107(10): 1275-89, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-20847309

RESUMEN

RATIONALE: Mechanotransduction and the response to biomechanical stress is a fundamental response in heart disease. Loss of phosphoinositide 3-kinase (PI3K)γ, the isoform linked to G protein-coupled receptor signaling, results in increased myocardial contractility, but the response to pressure overload is controversial. OBJECTIVE: To characterize molecular and cellular responses of the PI3Kγ knockout (KO) mice to biomechanical stress. METHODS AND RESULTS: In response to pressure overload, PI3KγKO mice deteriorated at an accelerated rate compared with wild-type mice despite increased basal myocardial contractility. These functional responses were associated with compromised phosphorylation of Akt and GSK-3α. In contrast, isolated single cardiomyocytes from banded PI3KγKO mice maintained their hypercontractility, suggesting compromised interaction with the extracellular matrix as the primary defect in the banded PI3KγKO mice. ß-Adrenergic stimulation increased cAMP levels with increased phosphorylation of CREB, leading to increased expression of cAMP-responsive matrix metalloproteinases (MMPs), MMP2, MT1-MMP, and MMP13 in cardiomyocytes and cardiofibroblasts. Loss of PI3Kγ resulted in increased cAMP levels with increased expression of MMP2, MT1-MMP, and MMP13 and increased MMP2 activation and collagenase activity in response to biomechanical stress. Selective loss of N-cadherin from the adhesion complexes in the PI3KγKO mice resulted in reduced cell adhesion. The ß-blocker propranolol prevented the upregulation of MMPs, whereas MMP inhibition prevented the adverse remodeling with both therapies, preventing the functional deterioration in banded PI3KγKO mice. In banded wild-type mice, long-term propranolol prevented the adverse remodeling and systolic dysfunction with preservation of the N-cadherin levels. CONCLUSIONS: The enhanced propensity to develop heart failure in the PI3KγKO mice is attributable to a cAMP-dependent upregulation of MMP expression and activity and disorganization of the N-cadherin/ß-catenin cell adhesion complex. ß-Blocker therapy prevents these changes thereby providing a novel mechanism of action for these drugs.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Cardiomegalia/enzimología , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , AMP Cíclico/metabolismo , Matriz Extracelular/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Mecanotransducción Celular , Miocardio/enzimología , Remodelación Ventricular , Antagonistas Adrenérgicos beta/administración & dosificación , Animales , Fenómenos Biomecánicos , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/fisiopatología , Adhesión Celular , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase Ib/deficiencia , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Fibroblastos/enzimología , Glucógeno Sintasa Quinasa 3/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/prevención & control , Masculino , Metaloproteinasa 13 de la Matriz/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Mecanotransducción Celular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Miocardio/patología , Miocitos Cardíacos/enzimología , Fosforilación , Propranolol/administración & dosificación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Estrés Mecánico , Factores de Tiempo , Remodelación Ventricular/efectos de los fármacos , beta Catenina/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 30(4): 724-32, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20237330

RESUMEN

OBJECTIVE: Myocardial infarction (MI) is a serious complication of atherosclerosis associated with increasing mortality attributable to heart failure. Activation of phosphoinositide 3-kinase [PI3K(p110 alpha)] is considered a new strategy for the treatment of heart failure. However, whether PI3K(p110 alpha) provides protection in a setting of MI is unknown, and PI3K(p110 alpha) is difficult to target because it has multiple actions in numerous cell types. The goal of this study was to assess whether PI3K(p110 alpha) is beneficial in a setting of MI and, if so, to identify cardiac-selective microRNA and mRNA that mediate the protective properties of PI3K(p110 alpha). METHODS AND RESULTS: Cardiomyocyte-specific transgenic mice with increased or decreased PI3K(p110 alpha) activity (caPI3K-Tg and dnPI3K-Tg, respectively) were subjected to MI for 8 weeks. The caPI3K-Tg subjected to MI had better cardiac function than nontransgenic mice, whereas dnPI3K-Tg had worse function. Using microarray analysis, we identified PI3K-regulated miRNA and mRNA that were correlated with cardiac function, including growth factor receptor-bound 14. Growth factor receptor-bound 14 is highly expressed in the heart and positively correlated with PI3K(p110 alpha) activity and cardiac function. Mice deficient in growth factor receptor-bound 14 have cardiac dysfunction. CONCLUSIONS: Activation of PI3K(p110 alpha) protects the heart against MI-induced heart failure. Cardiac-selective targets that mediate the protective effects of PI3K(p110 alpha) represent new drug targets for heart failure.


Asunto(s)
Insuficiencia Cardíaca/prevención & control , MicroARNs/metabolismo , Infarto del Miocardio/enzimología , Miocardio/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas/genética , ARN Mensajero/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Fosfatidilinositol 3-Quinasa Clase I , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica/métodos , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Infarto del Miocardio/complicaciones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/genética , Infarto del Miocardio/fisiopatología , Miocardio/patología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/genética , Proteínas/metabolismo , Factores de Tiempo , Ultrasonografía , Función Ventricular Izquierda , Presión Ventricular
6.
Am J Pathol ; 175(3): 998-1009, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19679877

RESUMEN

Atrial fibrillation (AF) is the most common sustained arrhythmia presenting at cardiology departments. A limited understanding of the molecular mechanisms responsible for the development of AF has hindered treatment strategies. The purpose of this study was to assess whether reduced activation of phosphoinositide 3-kinase (PI3K, p110alpha) makes the compromised heart susceptible to AF. Risk factors for AF, including aging, obesity, and diabetes, have been associated with insulin resistance that leads to depressed/defective PI3K signaling. However, to date, there has been no link between PI3K(p110alpha) and AF. To address this question, we crossed a cardiac-specific transgenic mouse model of dilated cardiomyopathy (DCM) with a cardiac-specific transgenic mouse expressing a dominant negative mutant of PI3K (dnPI3K; reduces PI3K activity). Adult ( approximately 4.5 months) double-transgenic (dnPI3K-DCM), single-transgenic (DCM-Tg, dnPI3K-Tg), and nontransgenic mice were subjected to morphological, functional/ECG, microarray, and biochemical analyses. dnPI3K-DCM mice developed AF and had depressed cardiac function as well as greater atrial enlargement and fibrosis than DCM-Tg mice. AF was not detected in other groups. Aged DCM-Tg mice ( approximately 15 months) with a similar phenotype to dnPI3K-DCM mice (4.5 months) did not develop AF, suggesting loss of PI3K activity directly contributed to the AF phenotype. Furthermore, increasing PI3K activity reduced atrial fibrosis and improved cardiac conduction in DCM-Tg mice. Finally, in atrial appendages from patients with AF, PI3K activation was lower compared with tissue from patients in sinus rhythm. These results suggest a link between PI3K(p110alpha) and AF.


Asunto(s)
Fibrilación Atrial/enzimología , Cardiomiopatía Dilatada/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Fibrilación Atrial/etiología , Cardiomiopatía Dilatada/etiología , Cardiomiopatía Dilatada/fisiopatología , Fosfatidilinositol 3-Quinasa Clase I , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Activación Enzimática , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Stem Cells ; 27(8): 1869-78, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19544447

RESUMEN

In vitro differentiation of human embryonic stem cells (hESCs) into pure human cardiomyocytes (hESCMs) would present a powerful tool to further the creation of cell models designed to advance preclinical drug development. Here, we report a novel differentiation method to substantially increase hESCM yield. Upon early and transient treatment of hESCs with Wnt3a, embryoid body and mesendoderm formation is enhanced, leading to greater differentiation toward cardiomyocytes. Moreover, the generated beating clusters are highly enriched with cardiomyocytes (50%) and express genes characteristic of cardiac cells, providing evidence that these hESCMs are competent to develop in vitro into functional and physiologically relevant cardiomyocytes. In summary, this protocol not only has the potential to guarantee a renewable supply of enriched cardiomyocyte populations for developing novel and more predictive cell models, but it also should provide valuable insights into pathways critical for cardiac regeneration.


Asunto(s)
Células Madre Embrionarias/citología , Miocitos Cardíacos/citología , Ingeniería de Tejidos/métodos , Proteínas Wnt/farmacología , Animales , Comunicación Celular/fisiología , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Humanos , Insulina/farmacología , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Proteínas Recombinantes/farmacología , Proteína Wnt3 , Proteína Wnt3A
8.
Circ Res ; 103(6): 643-53, 2008 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-18688045

RESUMEN

Ischemic preconditioning (IPC) is a potent cellular protective mechanism whereby brief periods of sublethal ischemia protect the myocardium from prolonged ischemia-induced injury. We demonstrate the selective role of phosphatidylinositol 3-kinase (PI3K) isoforms in IPC. Hearts from PI3Kgamma knockout mice (PI3Kgamma(-/-)) displayed poorer functional recovery and greater tissue injury following IPC compared to wild-type and PI3Kgamma(+/-) hearts. Examination of the cell-signaling pathways revealed restored phosphorylation levels of Akt and glycogen synthase kinase (GSK)3beta in wild-type hearts, which were abolished in PI3Kgamma(-/-) hearts subjected to IPC. Inhibition of GSK3beta by LiCl reversed the loss in protection in PI3Kgamma(-/-) hearts. In contrast, mice expressing a cardiac-specific kinase-deleted PI3Kalpha (PI3KalphaDN) were resistant to injury induced by 30 minutes of ischemia followed by 40 minutes of reperfusion. Furthermore, the resistance of PI3KalphaDN hearts to ischemia/reperfusion correlated with the persistent expression of p110gamma and was blocked by the PI3K inhibitor wortmannin, suggesting the possible enhanced cell signaling through the PI3Kgamma pathway. These results demonstrate the importance of the PI3Kgamma-Akt-GSK3beta signaling pathway in IPC. Selective activation of myocardial PI3Kgamma may be an attractive target for the treatment of ischemic heart disease.


Asunto(s)
Adenosina/farmacología , Precondicionamiento Isquémico Miocárdico/métodos , Isquemia Miocárdica/enzimología , Isquemia Miocárdica/prevención & control , Fosfatidilinositol 3-Quinasas/fisiología , Adenosina/uso terapéutico , Animales , Fosfatidilinositol 3-Quinasa Clase Ib , Isoenzimas/deficiencia , Isoenzimas/genética , Isoenzimas/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Isquemia Miocárdica/genética , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Fosfatidilinositol 3-Quinasas/deficiencia , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
9.
Cardiovasc Res ; 78(3): 546-53, 2008 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-18267957

RESUMEN

AIMS: The ability of lipopolysaccharide (LPS) pre-treatment to induce cardioprotection following ischaemia/reperfusion (I/R) has been well documented; however, the mechanisms have not been fully elucidated. LPS is a Toll-like receptor 4 (TLR4) ligand. Recent evidence indicates that there is cross-talk between the TLR and phosphoinositide 3-kinase/Akt (PI3K/Akt) signalling pathways. We hypothesized that activation of PI3K/Akt signalling plays a critical role in LPS-induced cardioprotection. METHODS AND RESULTS: To evaluate this hypothesis, we pre-treated mice with LPS 24 h before the hearts were subjected to ischaemia (45 min) and reperfusion (4 h). We examined activation of the PI3K/Akt/GSK-3beta signalling pathway. The effect of PI3K/Akt inhibition on LPS-induced cardioprotection was also evaluated. LPS pre-treatment significantly reduced infarct size (71.25%) compared with the untreated group (9.3+/-1.58 vs. 32.3+/-2.92%, P<0.01). Cardiac myocyte apoptosis and caspase-3 activity in LPS-pre-treated mice were significantly reduced following I/R. LPS pre-treatment significantly increased the levels of phospho-Akt, phospho-GSK-3beta, and heat shock protein 27 in the myocardium. Pharmacological inhibition of PI3K by LY294002 or genetic modulation employing kinase-defective Akt transgenic mice abolished the cardioprotection induced by LPS. CONCLUSION: These results indicate that LPS-induced cardioprotection in I/R injury is mediated through a PI3K/Akt-dependent mechanism.


Asunto(s)
Lipopolisacáridos/farmacología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Miocardio/enzimología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Cromonas/farmacología , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Masculino , Ratones , Ratones Transgénicos , Morfolinas/farmacología , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/patología , Miocardio/patología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética
10.
J Clin Invest ; 115(6): 1522-31, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15902305

RESUMEN

Mutations in developmental regulatory genes have been found to be responsible for some cases of congenital heart defects. One such regulatory gene is Gata4, a zinc finger transcription factor. In order to circumvent the early embryonic lethality of Gata4-null embryos and to investigate the role of myocardial Gata4 expression in cardiac development, we used Cre/loxP technology to conditionally delete Gata4 in the myocardium of mice at an early and a late time point in cardiac morphogenesis. Early deletion of Gata4 by Nkx2-5Cre resulted in hearts with striking myocardial thinning, absence of mesenchymal cells within the endocardial cushions, and selective hypoplasia of the RV. RV hypoplasia was associated with downregulation of Hand2, a transcription factor previously shown to regulate formation of the RV. Cardiomyocyte proliferation was reduced, with a greater degree of reduction in the RV than in the LV. Late deletion of Gata4 by Cre recombinase driven by the alpha myosin heavy chain promoter did not selectively affect RV development or generation of endocardial cushion mesenchyme but did result in marked myocardial thinning with decreased cardiomyocyte proliferation, as well as double-outlet RV. Our results demonstrate a general role of myocardial Gata4 in regulating cardiomyocyte proliferation and a specific, stage-dependent role in regulating the morphogenesis of the RV and the atrioventricular canal.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica , Ventrículos Cardíacos/embriología , Morfogénesis/fisiología , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Proteínas de Unión al ADN/genética , Factor de Transcripción GATA4 , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Ventrículos Cardíacos/citología , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Integrasas/genética , Mesodermo/citología , Mesodermo/fisiología , Ratones , Ratones Transgénicos , Morfogénesis/genética , Miocardio/citología , Miocitos Cardíacos/citología , Factores de Transcripción/genética , Proteínas Virales/genética
11.
Mol Cell Biol ; 25(21): 9491-502, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16227599

RESUMEN

Class I(A) phosphoinositide 3-kinases (PI3Ks) are activated by growth factor receptors, and they regulate, among other processes, cell growth and organ size. Studies using transgenic mice overexpressing constitutively active and dominant negative forms of the p110alpha catalytic subunit of class I(A) PI3K have implicated the role of this enzyme in regulating heart size and physiological cardiac hypertrophy. To further understand the role of class I(A) PI3K in controlling heart growth and to circumvent potential complications from the overexpression of dominant negative and constitutively active proteins, we generated mice with muscle-specific deletion of the p85alpha regulatory subunit and germ line deletion of the p85beta regulatory subunit of class I(A) PI3K. Here we show that mice with cardiac deletion of both p85 subunits exhibit attenuated Akt signaling in the heart, reduced heart size, and altered cardiac gene expression. Furthermore, exercise-induced cardiac hypertrophy is also attenuated in the p85 knockout hearts. Despite such defects in postnatal developmental growth and physiological hypertrophy, the p85 knockout hearts exhibit normal contractility and myocardial histology. Our results therefore provide strong genetic evidence that class I(A) PI3Ks are critical regulators for the developmental growth and physiological hypertrophy of the heart.


Asunto(s)
Adaptación Fisiológica , Corazón/anatomía & histología , Corazón/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Dominio Catalítico/genética , Dominio Catalítico/fisiología , Células Cultivadas , Regulación de la Expresión Génica , Ratones , Ratones Noqueados , Células Musculares/patología , Miocardio/enzimología , Miocardio/patología , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Condicionamiento Físico Animal , Transducción de Señal
12.
J Clin Invest ; 113(8): 1130-7, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15085192

RESUMEN

Heterozygous mutations of the cardiac transcription factor Nkx2-5 cause atrioventricular conduction defects in humans by unknown mechanisms. We show in KO mice that the number of cells in the cardiac conduction system is directly related to Nkx2-5 gene dosage. Null mutant embryos appear to lack the primordium of the atrioventricular node. In Nkx2-5 haploinsufficiency, the conduction system has half the normal number of cells. In addition, an entire population of connexin40(-)/connexin45(+) cells is missing in the atrioventricular node of Nkx2-5 heterozygous KO mice. Specific functional defects associated with Nkx2-5 loss of function can be attributed to hypoplastic development of the relevant structures in the conduction system. Surprisingly, the cellular expression of connexin40, the major gap junction isoform of Purkinje fibers and a putative Nkx2-5 target, is unaffected, consistent with normal conduction times through the His-Purkinje system measured in vivo. Postnatal conduction defects in Nkx2-5 mutation may result at least in part from a defect in the genetic program that governs the recruitment or retention of embryonic cardiac myocytes in the conduction system.


Asunto(s)
Sistema de Conducción Cardíaco/patología , Proteínas de Homeodominio/genética , Mutación , Animales , Conexinas/análisis , Electrocardiografía , Proteínas de Homeodominio/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína alfa-5 de Unión Comunicante
13.
Mol Cell Biol ; 23(24): 9222-32, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14645532

RESUMEN

Nkx2.5 (also known as Csx) is an evolutionarily conserved cardiac transcription factor of the homeobox gene family. Nkx2.5 is required for early heart development, since Nkx2.5-null mice die before completion of cardiac looping. To identify genes regulated by Nkx2.5 in the developing heart, we performed subtractive hybridization by using RNA isolated from wild-type and Nkx2.5-null hearts at embryonic day 8.5. We isolated a mouse cDNA encoding myocardin A, which is an alternative spliced isoform of myocardin and the most abundant isoform in the heart from embryo to adult. The expression of myocardin A and myocardin was markedly downregulated in Nkx2.5-null mouse hearts. Transient-cotransfection analysis showed that Nkx2.5 transactivates the myocardin promoter. Inhibition of myocardin function in the teratocarcinoma cell line P19CL6 prevented differentiation into cardiac myocytes after dimethyl sulfoxide treatment. Myocardin A transactivated the promoter of the atrial natriuretic factor gene through the serum response element, which was augmented by bone morphogenetic protein 2 and transforming growth factor beta-activated kinase 1. These results suggest that myocardin expression is regulated by Nkx2.5 and that its function is required for cardiomyogenesis.


Asunto(s)
Corazón Fetal/embriología , Proteínas de Homeodominio/metabolismo , Proteínas Nucleares/genética , Transactivadores/genética , Factores de Transcripción , Proteínas de Xenopus/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Factor Natriurético Atrial/genética , Secuencia de Bases , Línea Celular , Clonación Molecular , ADN Complementario/genética , Regulación hacia Abajo , Corazón Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Homología de Secuencia de Aminoácido , Transducción de Señal , Activación Transcripcional , Proteínas de Xenopus/deficiencia , Proteínas de Xenopus/genética
14.
Mol Cell Biol ; 22(8): 2799-809, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11909972

RESUMEN

One of the least-understood areas in biology is the determination of the size of animals and their organs. In Drosophila, components of the insulin receptor phosphoinositide 3-kinase (PI3K) pathway determine body, organ, and cell size. Several biochemical studies have suggested that Akt/protein kinase B is one of the important downstream targets of PI3K. To examine the role of Akt in the regulation of organ size in mammals, we have generated and characterized transgenic mice expressing constitutively active Akt (caAkt) or kinase-deficient Akt (kdAkt) specifically in the heart. The heart weight of caAkt transgenic mice was increased 2.0-fold compared with that of nontransgenic mice. The increase in heart size was associated with a comparable increase in myocyte cell size in caAkt mice. The kdAkt mutant protein attenuated the constitutively active PI3K-induced overgrowth of the heart, and the caAkt mutant protein circumvented cardiac growth retardation induced by a kinase-deficient PI3K mutant protein. Rapamycin attenuated caAkt-induced overgrowth of the heart, suggesting that the mammalian target of rapamycin (mTOR) or effectors of mTOR mediated caAkt-induced heart growth. In conclusion, Akt is sufficient to induce a marked increase in heart size and is likely to be one of the effectors of the PI3K pathway in mediating heart growth.


Asunto(s)
Crecimiento/genética , Crecimiento/fisiología , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Corazón/anatomía & histología , Ratones , Ratones Transgénicos , Mutación , Miocardio/enzimología , Tamaño de los Órganos/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/fisiología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas c-akt , Sirolimus/farmacología , Función Ventricular Izquierda/genética , Función Ventricular Izquierda/fisiología
15.
Mol Cell Biol ; 24(14): 6231-40, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226426

RESUMEN

Ribosomal S6 kinases (S6Ks) have been depicted as critical effectors downstream of growth factor pathways, which play an important role in the regulation of protein synthesis by phosphorylating the ribosomal protein, S6. The goal of this study was to determine whether S6Ks regulate heart size, are critical for the induction of cardiac hypertrophy in response to a pathological or physiological stimulus, and whether S6Ks are critical downstream effectors of the insulin-like growth factor 1 (IGF1)-phosphoinositide 3-kinase (PI3K) pathway. For this purpose, we generated and characterized cardiac-specific S6K1 and S6K2 transgenic mice and subjected S6K1(-/-), S6K2(-/-), and S6K1(-/-) S6K2(-/-) mice to a pathological stress (aortic banding) or a physiological stress (exercise training). To determine the genetic relationship between S6Ks and the IGF1-PI3K pathway, S6K transgenic and knockout mice were crossed with cardiac-specific transgenic mice overexpressing the IGF1 receptor (IGF1R) or PI3K mutants. Here we show that overexpression of S6K1 induced a modest degree of hypertrophy, whereas overexpression of S6K2 resulted in no obvious cardiac phenotype. Unexpectedly, deletion of S6K1 and S6K2 had no impact on the development of pathological, physiological, or IGF1R-PI3K-induced cardiac hypertrophy. These studies suggest that S6Ks alone are not essential for the development of cardiac hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/fisiología , Animales , Antibióticos Antineoplásicos/metabolismo , Aorta/patología , Femenino , Feto/fisiología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Noqueados , Ratones Transgénicos , Tamaño de los Órganos , Fosfatidilinositol 3-Quinasas/genética , Condicionamiento Físico Animal , Receptor IGF Tipo 1/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Sirolimus/metabolismo , Estrés Mecánico , Natación
16.
Arterioscler Thromb Vasc Biol ; 26(4): 787-93, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16469952

RESUMEN

OBJECTIVE: This study characterized the role of insulin receptors and resistance on vascular endothelial growth factor (VEGF) expression and myocardial vascularization in physiological conditions and after ischemia. METHODS AND RESULTS: Cardiac microvascular density was reduced by 30% in insulin-resistant Zucker fatty rats versus lean controls. This was associated with a parallel 40% inhibition of insulin-stimulated activation of both Akt and VEGF expression in the myocardium and cardiomyocytes. In contrast, the activation of Erk1/2 by insulin remained unchanged. In cultured cardiomyocytes, insulin or insulin-like growth factor (IGF)-1 increased VEGF mRNA and protein expression by 2-fold. Inhibition of PI3K/Akt, especially Akt2-mediated cascades but not the Ras/MEK/Erk pathway, using chemical inhibitors, dominant negative adenoviral constructs, or siRNA approaches suppressed VEGF mRNA expression by insulin. Ventricular tissues from muscle insulin receptor knockout (MIRKO) mice, which lack insulin receptors in the myocardium, have significant reductions in insulin but not IGF-1 signaling, VEGF expression, and vascular density before and after ischemia versus controls. CONCLUSIONS: Insulin regulates VEGF gene expression and vascularization in the myocardium specifically via insulin receptors and the activation of PI3K/Akt pathway. Selective inhibition of this pathway may lead to the decreases in VEGF expression and capillary density in the myocardium of patients with insulin resistance.


Asunto(s)
Resistencia a la Insulina , Isquemia Miocárdica/metabolismo , Neovascularización Patológica/metabolismo , Receptor de Insulina/fisiología , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Androstadienos/farmacología , Animales , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/fisiopatología , Flavonoides/farmacología , Humanos , Insulina/farmacología , Masculino , Ratones , Isquemia Miocárdica/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Neovascularización Patológica/fisiopatología , Fosfatidilinositol 3-Quinasas/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/fisiología , Ratas , Ratas Zucker , Transducción de Señal , Wortmanina
17.
Stem Cell Reports ; 8(2): 226-234, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28111276

RESUMEN

To predict drug-induced serious adverse events (SAE) in clinical trials, a model using a panel of cells derived from human induced pluripotent stem cells (hiPSCs) of individuals with different susceptibilities could facilitate major advancements in translational research in terms of safety and pharmaco-economics. However, it is unclear whether hiPSC-derived cells can recapitulate interindividual differences in drug-induced SAE susceptibility in populations not having genetic disorders such as healthy subjects. Here, we evaluated individual differences in SAE susceptibility based on an in vitro model using hiPSC-derived cardiomyocytes (hiPSC-CMs) as a pilot study. hiPSCs were generated from blood samples of ten healthy volunteers with different susceptibilities to moxifloxacin (Mox)-induced QT prolongation. Different Mox-induced field potential duration (FPD) prolongation values were observed in the hiPSC-CMs from each individual. Interestingly, the QT interval was significantly positively correlated with FPD at clinically relevant concentrations (r > 0.66) in multiple analyses including concentration-QT analysis. Genomic analysis showed no interindividual significant differences in known target-binding sites for Mox and other drugs such as the hERG channel subunit, and baseline QT ranges were normal. The results suggest that hiPSC-CMs from healthy subjects recapitulate susceptibility to Mox-induced QT prolongation and provide proof of concept for in vitro preclinical trials.


Asunto(s)
Fenómenos Electrofisiológicos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Potenciales de Acción/efectos de los fármacos , Alelos , Diferenciación Celular , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Electrocardiografía , Perfilación de la Expresión Génica , Frecuencia de los Genes , Voluntarios Sanos , Sistema de Conducción Cardíaco/efectos de los fármacos , Humanos , Masculino , Mutación , Miocitos Cardíacos/citología , Polimorfismo de Nucleótido Simple
18.
J Card Fail ; 12(5): 392-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16762803

RESUMEN

BACKGROUND: Conditional gene inactivation in mice using the bacteriophage P1 Cre-loxP recombination system requires transgenic expression of Cre-recombinase driven by a tissue-specific or inducible promoter. METHODS AND RESULTS: Using the cardiac alpha-myosin-heavy-chain promoter, the most commonly used myocardial-specific transgenic promoter, we created transgenic mice expressing Cre-recombinase in the heart. Seven transgenic lines developed dilated cardiomyopathy and premature death from congestive heart failure. One founder line that survived long enough to propagate had extremely high-level Cre recombinase expression. Transgenic lines that expressed low levels remained healthy. The high-expressing strain developed heart failure over a very predictable and reproducible time course. Detailed examination of the high-expressing strain revealed important molecular, cellular, and pharmacologic hallmarks of cardiomyopathy. First, "fetal genes" such as atrial natriuretic factor and brain natriuretic protein were expressed, a marker of pathologic cardiac hypertrophy and heart failure. Second, an increased incidence of cardiac myocyte apoptosis was present. Third, treatment of mice with captopril or metoprolol, drugs that delay the progression of heart failure, improved survival. CONCLUSION: Cre-recombinase when expressed at high levels may cause organ dysfunction, which could be mistaken for an effect of conditional gene inactivation. In addition, the stereotypic cardiomyopathy and disease progression in the characterized, high-expressing transgenic strain suggests its utility as a model to study the effects of pharmacologic or genetic manipulations in heart failure.


Asunto(s)
Cardiomiopatía Dilatada/etiología , Integrasas/metabolismo , Miocardio/enzimología , Antagonistas Adrenérgicos beta/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Apoptosis , Biomarcadores/metabolismo , Captopril/farmacología , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/fisiopatología , Expresión Génica , Corazón/fisiopatología , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/mortalidad , Masculino , Metoprolol/farmacología , Ratones , Ratones Endogámicos , Ratones Transgénicos , Miocardio/patología , Miocitos Cardíacos , Tamaño de los Órganos , Análisis de Supervivencia , Regulación hacia Arriba
19.
Novartis Found Symp ; 274: 90-111; discussion 111-7, 152-5, 272-6, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17019808

RESUMEN

Growth of the heart can be induced by physiological stimuli (e.g. postnatal development or chronic exercise training: 'the athlete's heart') or pathological stimuli (e.g. pressure or volume overload). Physiological hypertrophy is characterized by the normal organization of sarcomeres and fibres, normal or enhanced cardiac function and a relatively normal pattern of cardiac gene expression; whereas pathological hypertrophy is associated with an altered pattern of cardiac gene expression, fibrosis, cardiac dysfunction and increased mortality. Previously, an unresolved question in cardiac biology was whether distinct signalling pathways are responsible for the development of pathological and physiological cardiac hypertrophy. Recent studies have identified several signalling pathways that play unique roles in the regulation of pathological and physiological cardiac hypertrophy. This review focuses largely on the role of the insulin-like growth factor 1 (IGF1)/phosphoinositide-3-kinase (PI3K) pathway in mediating physiological cardiac growth.


Asunto(s)
Cardiomegalia/patología , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/fisiología , Fosfatidilinositol 3-Quinasas/metabolismo , Animales , Cardiomegalia/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Ratones Transgénicos , Modelos Biológicos , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal
20.
FASEB J ; 19(11): 1495-7, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15972800

RESUMEN

Heterozygous mutations of the cardiac transcription factor Nkx2-5 cause congenital heart disease. To elucidate the molecular pathways of transcription factor mutant phenotypes or diseases, direct targets are commonly sought in studies of homozygous null mutant animals and by heterologous promoter-reporter gene transactivation assays. The expression of putative target genes in a physiologic range of transcription factor concentration, however, is often not examined. Heterozygous Nkx2-5 knockout (Nkx2-5+/-) mice have no more than half-normal levels of Nkx2-5 protein. We therefore measured the mRNA expression of four putative targets of the cardiac transcription factor Nkx2-5 in wild-type and Nkx2-5+/- animals in a variety of developmental and pathologic states. Wild-type and Nkx2-5+/- embryonic hearts expressed similar levels of atrial natriuretic factor (ANF), brain natriuretic peptide (BNP), the RNA helicase Csm, and homeodomain only protein HOP. In the failing adult ventricle, ANF and BNP were up-regulated to the same extent in wild-type and Nkx2-5+/- myocardium. Csm and HOP were down-regulated in heart failure, and Nkx2-5+/- hearts expressed about half-normal levels in healthy and failing states. No consistent relationship existed between the expression of putative transcriptional targets and Nkx2-5 gene dosage in the physiologically relevant range. Any dependence of gene expression on Nkx2-5 gene dosage is affected by factors specific to the individual gene and the physiologic context.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Homeodominio/fisiología , Miocardio/metabolismo , Factores de Transcripción/fisiología , Animales , Factor Natriurético Atrial/genética , Conexinas/genética , Corazón Fetal/metabolismo , Heterocigoto , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Masculino , Ratones , Miocardio/química , Péptido Natriurético Encefálico/genética , Factores de Transcripción/genética , Proteína alfa-5 de Unión Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA