RESUMEN
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.
Asunto(s)
Evolución Biológica , Herbivoria , Demografía , FloresRESUMEN
The genetic structure and diversity of species is determined by both current population dynamics and historical processes. Population genetic structure at the edge of the distribution is often expected to differ substantially from populations at the centre, as these edge populations are often small and fragmented. In addition, populations located in regions that have experienced repeated glaciations throughout the Pleistocene, may still carry imprints from the genetic consequences of frequent distribution shifts. Using chloroplast DNA sequences and nuclear microsatellite markers we studied the genetic structure of Epipactis atrorubens at the northern edge of its distribution. Contrary to populations in the centre of the distribution, populations at the northern range are regionally endangered as they are small and disjunct. Sequence data of 2 chloroplast loci and allelic data from 6 nuclear microsatellite markers were obtained from 297 samples from Finland, Estonia and Russia. We sought for genetic indicators of past population processes, such as post-glacial colonisation history of E. atrorubens. As expected, we observed low genetic variation, in terms of numbers of substitutions, haplotypes and alleles, and significant levels of differentiation, especially pronounced in the chloroplast DNA. These features suggest that the edge populations could be prone to extinction.
Asunto(s)
ADN de Cloroplastos/genética , Genes del Cloroplasto/genética , Repeticiones de Microsatélite/genética , Orchidaceae/genética , Animales , Asia , Núcleo Celular/genética , ADN de Cloroplastos/química , Especies en Peligro de Extinción , Europa (Continente) , Frecuencia de los Genes , Variación Genética , Genética de Población , Geografía , Haplotipos , Orchidaceae/clasificación , Filogenia , Dinámica Poblacional , Federación de Rusia , Análisis de Secuencia de ADNRESUMEN
Food deception as a pollination strategy has inspired many studies over the last few decades. Pollinator deception has evolved in many orchids possibly to enhance outcrossing. Food-deceptive orchids usually have low pollinator visitation rates as compared to rewarding species. They may benefit in visitations from the presence (magnet-species hypothesis) or, alternatively, absence of coflowering rewarding species (competition hypothesis). We present data on pollinator visitations on a deceptive, terrestrial orchid Calypso bulbosa, a species with a single flower per plant and whose flowering period partly overlaps with rewarding, early flowering willows (Salix sp.) and later-flowering bilberry (Vaccinium myrtillus). When surveying inactive bumblebee queens on willows in cool weather, about 7% of them carried Calypso pollinia. Most common bumblebee species appeared to visit and thus pollinate Calypso. Bumblebees typically visited one to three Calypso flowers before flying away, providing some support for the outcrossing hypothesis. We conclude that, regarding the pollinations strategy, both magnet-species and competition hypotheses have a role in the pollination of Calypso, but on different spatial scales. On a large scale rewarding species are important for attracting pollinators to a given region, but on a small scale absence of competition ensures sufficient pollination rate for the deceptive orchid.
Asunto(s)
Abejas/fisiología , Flores , Orchidaceae/fisiología , Polinización , AnimalesRESUMEN
Short-term surveys are useful in conservation of species if they can be used to reliably predict the long-term fate of populations. However, statistical evaluations of reliability are rare. We studied how well short-term demographic data (1999-2002) of tartar catchfly (Silene tatarica), a perennial riparian plant, projected the fate and growth of 23 populations of this species up to the year 2010. Surveyed populations occurred along a river with natural flood dynamics and along a regulated river. Riparian plant populations are affected by flooding, which maintains unvegetated shores, while forest succession proceeds in areas with little flooding. Flooding is less severe along the regulated river, and vegetation overgrowth reduces abundance of tartar catchfly on unvegetated shores. We built matrix models to calculate population growth rates and estimated times to population extinction in natural and in regulated rivers, 13 and 10 populations, respectively. Models predicted population survival well (model predictions matched observed survival in 91% of populations) and accurately predicted abundance increases and decreases in 65% of populations. The observed and projected population growth rates differed significantly in all but 3 populations. In most cases, the model overestimated population growth. Model predictions did not improve when data from more years were used (1999-2006). In the regulated river, the poorest model predictions occurred in areas where cover of other plant species changed the fastest. Although vegetation cover increased in most populations, it decreased in 4 populations along the natural river. Our results highlight the need to combine disturbance and succession dynamics in demographic models and the importance of habitat management for species survival along regulated rivers.
Asunto(s)
Silene/fisiología , Conservación de los Recursos Naturales/métodos , Ecosistema , Modelos Teóricos , Densidad de Población , Dinámica Poblacional , Ríos , Factores de TiempoRESUMEN
In plants, prolonged dormancy is often considered a response to resource depletion or environmental stress that comes at a fitness cost. However, apparent costs of dormancy could reflect the state in which plants entered dormancy, rather than effects of dormancy per se. We tested this hypothesis for a terrestrial orchid, Epipactis atrorubens, by analyzing differences in vital rates of dormant and emergent plants using generalized linear mixed models, applied to eight years of demographic data. Dormant E. atrorubens plants did not form one homogeneous stage class. Instead, the vital rates of dormant plants mirrored performance of plants in their life stage before dormancy. Plants emerging from dormancy were slightly (albeit only marginally statistically significantly) larger than plants transitioning from the matching aboveground stage class, especially for smaller and younger stage classes. Because small plants were most likely to go dormant, plants emerging from dormancy were also smaller than average, if one were to compare all previously dormant plants to all previously emergent plants. Therefore, misclassifying all dormant plants into a single stage class changes whether we view dormancy as intrinsically costly, in terms of future performance upon emergence. We suggest that prolonged dormancy may be a form of phenotypic plasticity in which plants distribute their performance and reproductive effort through time, rather than a simple stress response.
Asunto(s)
Ecosistema , Orchidaceae/fisiología , Factores de TiempoRESUMEN
We present the first dataset that can be used to associate peoples' opinions with comprehensive biodiversity and cultural heritage values. The socio-ecological dataset includes 1) place-based information on peoples' recreational activities, values expressed as pleasant and unpleasant sites, and negative preferences concerning land use in terms of tourism, nature protection and forestry, and 2) compiled information on scored biodiversity values and protection level of sites. The data are organized in 1ha grid cells. The data were compiled from a rural nature-based tourism area in two municipalities northern Finland. Peoples' opinions were assessed using a public participation geographic information system (PPGIS) and the data were merged with spatial biodiversity data from the same area. The data are directly related to the article Tolvanen et al. [1]. Biodiversity data, also utilized in Tolvanen et al. 2020, were compiled from various sources and scoring was done in Kangas et al. [2]. References to individual respondents and spatial locations of markings were removed. The data are useful in evaluating the relationship between people's values and biodiversity.
RESUMEN
Regional persistence of species requires a positive balance between colonizations and local extinctions. In this study, we examined the amount of colonizations and extinctions and their likelihood as a function of patch size, isolation, and habitat characteristics of a riparian perennial plant, Erigeron acer subsp. decoloratus. We also studied the importance of patch dynamics to the regional population growth. Over five successive years, we counted the number of plant patches along 43 km of riverside. Most patches were small in area and population size. The annual finite growth rate in the number of patches varied between years, but the geometric mean was close to 1.0, indicating a viable patch network in spite of local extinctions. Extinction rate was highest on steep slopes and for small patches with few individual plants and a small patch area. When the patches were classified into different stage classes, the most common fate was stasis, i.e., the patch remained at the same stage. Patch survival and local, within-patch dynamics were most important during this five-year period. Between-patch dynamics (including colonization for example) accounted for 5-10% of annual transitions. The overall dynamics were relatively similar to those of other plant species subjected to riparian disturbance regimes. In the long run, the survival of the species depends on how well it is able to escape from competition from forest and meadow species and track the availability of suitable habitats. This kind of habitat tracking differs from classical metapopulation dynamics. In the former, local extinctions occur as a consequence of adverse changes in the habitat and recolonizations are rare, whereas metapopulation models assume a highly persistent habitat structure with frequent recolonizations. In this respect, the regional dynamics of perennial plants in disturbed riparian habitats may differ from classical metapopulations.
Asunto(s)
Ecosistema , Erigeron/crecimiento & desarrollo , Extinción BiológicaRESUMEN
This study partitions selection in a natural metapopulation of a riparian plant species, Silene tatarica, into individual- and patch-level components by using contextual analysis, in which a patch refers to a spatially distinct stand of individual plants. We estimated selection gradients for two morphological characters (plant height and number of stems), their respective patch means, and plant density with respect to reproductive success in a two-year study. The approach was also extended to partition selection separately within habitats with varying degrees of exposure to river disturbances and herbivory. The selection differentials and gradients for plant height were positive at both individual and patch levels, with selection forces highest in the closed habitat with low exposure to disturbance. This pattern suggests that local groups with taller than average plants are more visible to pollinators than to groups that are shorter than average plants; and, within patches, individuals with short stature are visited less often than taller ones. Selection on the number of stems was in opposition at individual and patch levels. At the individual level the character was selected toward higher values, whereas selection at the patch-level favored smaller mean number of stems. The strength of the latter component was associated with the intensity of herbivory in different habitats, suggesting that the patch-level selection against a large number of stems might be due to high attractiveness of such patches to the main herbivore, reindeer. Consequently, direction and strength of selection in spatially structured populations may depend significantly on fitness effects arising at the group level.
Asunto(s)
Selección Genética , Silene/genética , Clima , Ambiente , Finlandia , Geografía , Fenotipo , Polen/fisiología , Estaciones del Año , Silene/fisiologíaRESUMEN
In transient environments, where local extinctions occur as a result of destruction or deterioration of the local habitat, the long-term persistence of a species requires successful colonizations at new, suitable sites. This kind of habitat tracking should be associated with the asynchronous dynamics of local populations, and it can be especially important for the conservation of rare plant species in riparian habitats. We determined spatiotemporal variation in the demography of the perennial Silene tatarica (L.) Pers. in 15 populations (1998-2003) located in periodically disturbed riparian habitats. The habitats differed according to their morphology (flat shores, slopes) and the amount of bare ground (open, intermediate, closed) along a successional gradient. We used elasticity and life-table response analyses and stochastic simulations to study the variation in population demography. Finite population growth rate was higher in intermediate habitats than in open and closed habitats. In stochastic simulations population size increased in most cases, but four populations were projected to become extinct within 12-70 years. The viability of local populations depended most on the survival and growth of juvenile individuals and on the fecundity of large fertile individuals. On a regional scale, the persistence of this species will require a viable network of local populations as protection against local extinctions caused by natural disturbances and succession. Accordingly, the long-term persistence of riparian species may depend on habitat changes; thus, their conservation requires maintenance of natural disturbance dynamics. Along regulated rivers, management activities such as the creation of open habitats for new colonization should be implemented. Similarly, these activities can be rather general requirements for the conservation of endangered species dependent on transient habitats along successional gradients.