Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 417
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 172(4): 857-868.e15, 2018 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-29336889

RESUMEN

The mechanism by which the wild-type KRAS allele imparts a growth inhibitory effect to oncogenic KRAS in various cancers, including lung adenocarcinoma (LUAD), is poorly understood. Here, using a genetically inducible model of KRAS loss of heterozygosity (LOH), we show that KRAS dimerization mediates wild-type KRAS-dependent fitness of human and murine KRAS mutant LUAD tumor cells and underlies resistance to MEK inhibition. These effects are abrogated when wild-type KRAS is replaced by KRASD154Q, a mutant that disrupts dimerization at the α4-α5 KRAS dimer interface without changing other fundamental biochemical properties of KRAS, both in vitro and in vivo. Moreover, dimerization has a critical role in the oncogenic activity of mutant KRAS. Our studies provide mechanistic and biological insights into the role of KRAS dimerization and highlight a role for disruption of dimerization as a therapeutic strategy for KRAS mutant cancers.


Asunto(s)
Adenocarcinoma del Pulmón , Inhibidores Enzimáticos/farmacología , Neoplasias Pulmonares , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Mutación Missense , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/enzimología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Sustitución de Aminoácidos , Animales , Línea Celular Tumoral , Células HEK293 , Humanos , Pérdida de Heterocigocidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Multimerización de Proteína/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Cell ; 160(5): 977-989, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25723171

RESUMEN

There is a lack of effective predictive biomarkers to precisely assign optimal therapy to cancer patients. While most efforts are directed at inferring drug response phenotype based on genotype, there is very focused and useful phenotypic information to be gained from directly perturbing the patient's living cancer cell with the drug(s) in question. To satisfy this unmet need, we developed the Dynamic BH3 Profiling technique to measure early changes in net pro-apoptotic signaling at the mitochondrion ("priming") induced by chemotherapeutic agents in cancer cells, not requiring prolonged ex vivo culture. We find in cell line and clinical experiments that early drug-induced death signaling measured by Dynamic BH3 Profiling predicts chemotherapy response across many cancer types and many agents, including combinations of chemotherapies. We propose that Dynamic BH3 Profiling can be used as a broadly applicable predictive biomarker to predict cytotoxic response of cancers to chemotherapeutics in vivo.


Asunto(s)
Muerte Celular , Neoplasias/tratamiento farmacológico , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular , Femenino , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Mitocondrias/metabolismo , Neoplasias/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Medicina de Precisión
3.
Mol Cell ; 82(13): 2443-2457.e7, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35613620

RESUMEN

RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.


Asunto(s)
Neurofibromina 1 , Proteínas Proto-Oncogénicas A-raf , Proteínas Activadoras de ras GTPasa , Receptores ErbB/genética , Receptores ErbB/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Neurofibromina 1/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas A-raf/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo
4.
Nature ; 603(7900): 335-342, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35236983

RESUMEN

RAS family members are the most frequently mutated oncogenes in human cancers. Although KRAS(G12C)-specific inhibitors show clinical activity in patients with cancer1-3, there are no direct inhibitors of NRAS, HRAS or non-G12C KRAS variants. Here we uncover the requirement of the silent KRASG60G mutation for cells to produce a functional KRAS(Q61K). In the absence of this G60G mutation in KRASQ61K, a cryptic splice donor site is formed, promoting alternative splicing and premature protein termination. A G60G silent mutation eliminates the splice donor site, yielding a functional KRAS(Q61K) variant. We detected a concordance of KRASQ61K and a G60G/A59A silent mutation in three independent pan-cancer cohorts. The region around RAS Q61 is enriched in exonic splicing enhancer (ESE) motifs and we designed mutant-specific oligonucleotides to interfere with ESE-mediated splicing, rendering the RAS(Q61) protein non-functional in a mutant-selective manner. The induction of aberrant splicing by antisense oligonucleotides demonstrated therapeutic effects in vitro and in vivo. By studying the splicing necessary for a functional KRAS(Q61K), we uncover a mutant-selective treatment strategy for RASQ61 cancer and expose a mutant-specific vulnerability, which could potentially be exploited for therapy in other genetic contexts.


Asunto(s)
Neoplasias , Proteínas Proto-Oncogénicas p21(ras) , Mutación Silenciosa , Empalme Alternativo/genética , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/uso terapéutico , Oncogenes/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Sitios de Empalme de ARN/genética
5.
Cell ; 150(6): 1107-20, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980975

RESUMEN

Lung adenocarcinoma, the most common subtype of non-small cell lung cancer, is responsible for more than 500,000 deaths per year worldwide. Here, we report exome and genome sequences of 183 lung adenocarcinoma tumor/normal DNA pairs. These analyses revealed a mean exonic somatic mutation rate of 12.0 events/megabase and identified the majority of genes previously reported as significantly mutated in lung adenocarcinoma. In addition, we identified statistically recurrent somatic mutations in the splicing factor gene U2AF1 and truncating mutations affecting RBM10 and ARID1A. Analysis of nucleotide context-specific mutation signatures grouped the sample set into distinct clusters that correlated with smoking history and alterations of reported lung adenocarcinoma genes. Whole-genome sequence analysis revealed frequent structural rearrangements, including in-frame exonic alterations within EGFR and SIK2 kinases. The candidate genes identified in this study are attractive targets for biological characterization and therapeutic targeting of lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Genes Relacionados con las Neoplasias , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares/genética , Adenocarcinoma/patología , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios de Cohortes , Exoma , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Mutación , Tasa de Mutación
6.
N Engl J Med ; 389(21): 1935-1948, 2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-37937763

RESUMEN

BACKGROUND: Osimertinib is a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) that is selective for EGFR-TKI-sensitizing and EGFR T790M resistance mutations. Evidence suggests that the addition of chemotherapy may extend the benefits of EGFR-TKI therapy. METHODS: In this phase 3, international, open-label trial, we randomly assigned in a 1:1 ratio patients with EGFR-mutated (exon 19 deletion or L858R mutation) advanced non-small-cell lung cancer (NSCLC) who had not previously received treatment for advanced disease to receive osimertinib (80 mg once daily) with chemotherapy (pemetrexed [500 mg per square meter of body-surface area] plus either cisplatin [75 mg per square meter] or carboplatin [pharmacologically guided dose]) or to receive osimertinib monotherapy (80 mg once daily). The primary end point was investigator-assessed progression-free survival. Response and safety were also assessed. RESULTS: A total of 557 patients underwent randomization. Investigator-assessed progression-free survival was significantly longer in the osimertinib-chemotherapy group than in the osimertinib group (hazard ratio for disease progression or death, 0.62; 95% confidence interval [CI], 0.49 to 0.79; P<0.001). At 24 months, 57% (95% CI, 50 to 63) of the patients in the osimertinib-chemotherapy group and 41% (95% CI, 35 to 47) of those in the osimertinib group were alive and progression-free. Progression-free survival as assessed according to blinded independent central review was consistent with the primary analysis (hazard ratio, 0.62; 95% CI, 0.48 to 0.80). An objective (complete or partial) response was observed in 83% of the patients in the osimertinib-chemotherapy group and in 76% of those in the osimertinib group; the median response duration was 24.0 months (95% CI, 20.9 to 27.8) and 15.3 months (95% CI, 12.7 to 19.4), respectively. The incidence of grade 3 or higher adverse events from any cause was higher with the combination than with monotherapy - a finding driven by known chemotherapy-related adverse events. The safety profile of osimertinib plus pemetrexed and a platinum-based agent was consistent with the established profiles of the individual agents. CONCLUSIONS: First-line treatment with osimertinib-chemotherapy led to significantly longer progression-free survival than osimertinib monotherapy among patients with EGFR-mutated advanced NSCLC. (Funded by AstraZeneca; FLAURA2 ClinicalTrials.gov number, NCT04035486.).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Inhibidores de Proteínas Quinasas , Humanos , Compuestos de Anilina/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Pemetrexed/efectos adversos , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéutico
7.
Lancet ; 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39121882

RESUMEN

Targeted therapies and immunotherapies have radically improved treatment for advanced non-small-cell lung cancer (NSCLC). Tyrosine kinase inhibitors targeting oncogenic driver mutations continue to evolve over multiple generations to enhance effectiveness and tackle drug resistance. Immune checkpoint inhibitors remain integral for the treatment of NSCLCs that do not have specific actionable genetic mutations. Antibody-drug conjugates and bispecific antibodies are being integrated into treatment guidelines, and emerging therapies include T-cell engagers, cellular therapies, cancer vaccines, and external devices. Despite these advances, challenges remain in identifying predictive biomarkers to individually tailor treatments, abrogate resistance, reduce costs, and ensure optimal cancer treatment accessibility.

8.
N Engl J Med ; 387(2): 120-131, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35658005

RESUMEN

BACKGROUND: Adagrasib, a KRASG12C inhibitor, irreversibly and selectively binds KRASG12C, locking it in its inactive state. Adagrasib showed clinical activity and had an acceptable adverse-event profile in the phase 1-1b part of the KRYSTAL-1 phase 1-2 study. METHODS: In a registrational phase 2 cohort, we evaluated adagrasib (600 mg orally twice daily) in patients with KRASG12C -mutated non-small-cell lung cancer (NSCLC) previously treated with platinum-based chemotherapy and anti-programmed death 1 or programmed death ligand 1 therapy. The primary end point was objective response assessed by blinded independent central review. Secondary end points included the duration of response, progression-free survival, overall survival, and safety. RESULTS: As of October 15, 2021, a total of 116 patients with KRASG12C -mutated NSCLC had been treated (median follow-up, 12.9 months); 98.3% had previously received both chemotherapy and immunotherapy. Of 112 patients with measurable disease at baseline, 48 (42.9%) had a confirmed objective response. The median duration of response was 8.5 months (95% confidence interval [CI], 6.2 to 13.8), and the median progression-free survival was 6.5 months (95% CI, 4.7 to 8.4). As of January 15, 2022 (median follow-up, 15.6 months), the median overall survival was 12.6 months (95% CI, 9.2 to 19.2). Among 33 patients with previously treated, stable central nervous system metastases, the intracranial confirmed objective response rate was 33.3% (95% CI, 18.0 to 51.8). Treatment-related adverse events occurred in 97.4% of the patients - grade 1 or 2 in 52.6% and grade 3 or higher in 44.8% (including two grade 5 events) - and resulted in drug discontinuation in 6.9% of patients. CONCLUSIONS: In patients with previously treated KRASG12C -mutated NSCLC, adagrasib showed clinical efficacy without new safety signals. (Funded by Mirati Therapeutics; ClinicalTrials.gov number, NCT03785249.).


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Acetonitrilos/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/uso terapéutico
9.
N Engl J Med ; 386(3): 241-251, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34534430

RESUMEN

BACKGROUND: Human epidermal growth factor receptor 2 (HER2)-targeted therapies have not been approved for patients with non-small-cell lung cancer (NSCLC). The efficacy and safety of trastuzumab deruxtecan (formerly DS-8201), a HER2 antibody-drug conjugate, in patients with HER2-mutant NSCLC have not been investigated extensively. METHODS: We conducted a multicenter, international, phase 2 study in which trastuzumab deruxtecan (6.4 mg per kilogram of body weight) was administered to patients who had metastatic HER2-mutant NSCLC that was refractory to standard treatment. The primary outcome was objective response as assessed by independent central review. Secondary outcomes included the duration of response, progression-free survival, overall survival, and safety. Biomarkers of HER2 alterations were assessed. RESULTS: A total of 91 patients were enrolled. The median duration of follow-up was 13.1 months (range, 0.7 to 29.1). Centrally confirmed objective response occurred in 55% of the patients (95% confidence interval [CI], 44 to 65). The median duration of response was 9.3 months (95% CI, 5.7 to 14.7). Median progression-free survival was 8.2 months (95% CI, 6.0 to 11.9), and median overall survival was 17.8 months (95% CI, 13.8 to 22.1). The safety profile was generally consistent with those from previous studies; grade 3 or higher drug-related adverse events occurred in 46% of patients, the most common event being neutropenia (in 19%). Adjudicated drug-related interstitial lung disease occurred in 26% of patients and resulted in death in 2 patients. Responses were observed across different HER2 mutation subtypes, as well as in patients with no detectable HER2 expression or HER2 amplification. CONCLUSIONS: Trastuzumab deruxtecan showed durable anticancer activity in patients with previously treated HER2-mutant NSCLC. The safety profile included interstitial lung disease that was fatal in two cases. Observed toxic effects were generally consistent with those in previously reported studies. (Funded by Daiichi Sankyo and AstraZeneca; DESTINY-Lung01 ClinicalTrials.gov number, NCT03505710.).


Asunto(s)
Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Receptor ErbB-2/genética , Trastuzumab/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Camptotecina/efectos adversos , Camptotecina/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Femenino , Estudios de Seguimiento , Humanos , Inmunoconjugados/efectos adversos , Enfermedades Pulmonares Intersticiales/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Neumonía/inducido químicamente , Supervivencia sin Progresión , Trastuzumab/efectos adversos
10.
Gut ; 73(4): 639-648, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
11.
Lancet Oncol ; 25(4): 439-454, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38547891

RESUMEN

BACKGROUND: DESTINY-Lung01 is a multicentre, open-label, phase 2 study evaluating the antitumour activity and safety of trastuzumab deruxtecan, a HER2-directed antibody-drug conjugate, in patients with HER2-overexpressing or HER2 (ERBB2)-mutant unresectable or metastatic non-small-cell lung cancer (NSCLC). The results of the HER2-mutant cohort (cohort 2) have been reported elsewhere. Herein, we report the primary analysis of cohorts 1 and 1A, which aimed to evaluate the activity and safety of trastuzumab deruxtecan 5·4 mg/kg and 6·4 mg/kg in patients with HER2-overexpressing NSCLC. METHODS: Patients aged 18 years or older with unresectable or metastatic (or both unresectable and metastatic) non-squamous NSCLC who had relapsed following or were refractory to standard treatment or for whom no standard treatment was available, with an HER2 immunohistochemistry score of 3+ or 2+ (without known HER2 mutations) and an Eastern Cooperative Oncology Group performance status score of 0 or 1, were enrolled at 20 specialist hospitals in France, Japan, the Netherlands, Spain, and the USA. Patients were assigned to cohorts sequentially, first to cohort 1, to receive trastuzumab deruxtecan 6·4 mg/kg (cohort 1), then to cohort 1A, to receive trastuzumab deruxtecan 5·4 mg/kg, both administered intravenously once every 3 weeks. The primary endpoint was confirmed objective response rate by independent central review and was assessed in the full analysis set, which included all patients who signed an informed consent form and were enrolled in the study. Safety was assessed in all enrolled patients who received at least one dose of trastuzumab deruxtecan. This trial is registered with ClinicalTrials.gov, NCT03505710, and is ongoing (closed to recruitment). FINDINGS: Between Aug 27, 2018, and Jan 28, 2020, 49 patients were enrolled in cohort 1 (median age 63·0 years [IQR 58·0-68·0], 30 [61%] male, 19 [39%] female, and 31 [63%] White), and from June 16 to Dec 9, 2020, 41 patients were enrolled in cohort 1A (median age 62·0 years [IQR 56·0-66·0], 22 [54%] male, 19 [46%] female, and 31 [76%] White). As of data cutoff (Dec 3, 2021), the median treatment duration was 4·1 months (IQR 1·4-7·1) in cohort 1 and 5·5 months (1·4-8·7) in cohort 1A, and median follow-up was 12·0 months (5·4-22·4) in cohort 1 and 10·6 months (4·5-13·5) in cohort 1A. Confirmed objective response rate by independent central review was 26·5% (95% CI 15·0-41·1; 13 of 49, all partial responses) in cohort 1 and 34·1% (20·1-50·6; 14 of 41; two complete responses and 12 partial responses) in cohort 1A. The most common treatment-emergent adverse events of grade 3 or worse were neutropenia (12 [24%] of 49 in cohort 1, none in cohort 1A), pneumonia (six [12%] and two [5%], respectively), fatigue (six [12%] and three [7%], respectively), and disease progression (six [12%] and four [10%], respectively). Drug-related treatment-emergent adverse events of grade 3 or worse occurred in 26 (53%) of 41 patients in cohort 1 and nine (22%) of 49 patients in cohort 1A. Drug-related serious adverse events were reported in ten (20%) patients and three (7%) patients, respectively. Deaths due to treatment-emergent adverse events occurred in ten (20%) patients in cohort 1 (disease progression in six (12%) patients and bronchospasm, hydrocephalus, respiratory failure, and pneumonitis in one [2%] patient each), and in seven (17%) patients in cohort 1A (due to disease progression in four (10%) patients and dyspnoea, malignant neoplasm, and sepsis in one (2%) patient each). One death due to a treatment-emergent adverse event was determined to be due to study treatment by the investigator, which was in cohort 1 (pneumonitis). Independent adjudication of interstitial lung disease or pneumonitis found that drug-related interstitial lung disease or pneumonitis occurred in ten (20%) patients in cohort 1 (two [4%] grade 1, five [10%] grade 2, and three [6%] grade 5) and two (5%) patients in cohort 1A (one [2%] grade 2 and one [2%] grade 5). An additional patient in cohort 1A had grade 4 pneumonitis after the data cutoff, which was subsequently adjudicated as drug-related grade 5 interstitial lung disease or pneumonitis. INTERPRETATION: Given the low antitumour activity of existing treatment options in this patient population, trastuzumab deruxtecan might have the potential to fill a large unmet need in HER2-overexpressing NSCLC. Our findings support further investigation of trastuzumab deruxtecan in patients with HER2-overexpressing NSCLC. FUNDING: Daiichi Sankyo and AstraZeneca.


Asunto(s)
Camptotecina , Carcinoma de Pulmón de Células no Pequeñas , Inmunoconjugados , Enfermedades Pulmonares Intersticiales , Neoplasias Pulmonares , Neumonía , Trastuzumab , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Monoclonales Humanizados/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Progresión de la Enfermedad , Inmunoconjugados/efectos adversos , Enfermedades Pulmonares Intersticiales/inducido químicamente , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neumonía/inducido químicamente , Receptor ErbB-2/genética , Receptor ErbB-2/análisis , Trastuzumab/efectos adversos , Trastuzumab/uso terapéutico
12.
Mol Pharmacol ; 105(2): 97-103, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38164587

RESUMEN

Lung cancer is commonly caused by activating mutations in the epidermal growth factor receptor (EGFR). Allosteric kinase inhibitors are unaffected by common ATP-site resistance mutations and represent a promising therapeutic strategy for targeting drug-resistant EGFR variants. However, allosteric inhibitors are antagonized by kinase dimerization, and understanding this phenomenon has been limited to cellular experiments. To facilitate the study of allosteric inhibitor pharmacology, we designed and purified a constitutive EGFR kinase dimer harboring the clinically relevant L858R/T790M mutations. Kinetic characterization revealed that the EGFR kinase dimer is more active than monomeric EGFR(L858R/T790M) kinase and has the same Km,ATP Biochemical profiling of a large panel of ATP-competitive and allosteric EGFR inhibitors showed that allosteric inhibitor potency decreased by >500-fold in the kinase dimer compared with monomer, yielding IC50 values that correlate well with Ba/F3 cellular potencies. Thus, this readily purifiable constitutive asymmetric EGFR kinase dimer represents an attractive tool for biochemical evaluation of EGFR inhibitor pharmacology, in particular for allosteric inhibitors. SIGNIFICANCE STATEMENT: Drugs targeting epidermal growth factor receptor (EGFR) kinase are commonly used to treat lung cancers but are affected by receptor dimerization. Here, we describe a locked kinase dimer that can be used to study EGFR inhibitor pharmacology.


Asunto(s)
Receptores ErbB , Neoplasias Pulmonares , Humanos , Receptores ErbB/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Mutación , Adenosina Trifosfato , Resistencia a Antineoplásicos
13.
Cancer ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031586

RESUMEN

The past year has offered significant advancements in the field of non-small cell lung cancer (NSCLC), both in the early and advanced disease settings. The identification of guideline-recommended actionable targets has provided the foundation for developing multiple new therapeutic agents. There has been a focus on developing drugs designed to overcome acquired resistance, a limitation of tyrosine kinase inhibitor-based therapy in lung cancer. In addition, there is an emerging trend toward combination therapies for patients in the first-line setting with the goal of preventing or delaying resistance. Another promising area of development has been the use of antibody-drug conjugates, where there are the initial reports of central nervous system efficacy and activity in patients with genomic alterations. Over the past year, numerous publications and presentations have highlighted multiple therapeutic advances, offering new treatment options for patients with NSCLC. The focus of this review is to summarize the most impactful findings, emphasizing their significance in the evolving treatment landscape for NSCLC. Several landmark trials in lung cancer with practice-changing clinical implications have been presented and published in 2023. This article reviews a selection of these trials as they relate to early and advanced-stage oncogene-driven lung cancer. The ADAURA and ALINA trials, in which targeted therapy given in the adjuvant setting has demonstrated improved clinical outcomes, are reviewed. In the advanced-stage setting, recent trials in the context of specific oncogene drivers are reviewed, including EGFR, ALK, ROS1, RET, ERBB2 (HER2), BRAF, MET exon 14 skipping (METex14), and KRAS alterations. Also discussed are the results of several trials that have evaluated the use of combination therapies and resistance-mechanism agnostic treatment strategies. PLAIN LANGUAGE SUMMARY: Targeted therapy plays an important role for patients with early and advanced-stage non-small cell lung cancer carrying specific genetic alterations. New strategies that combine multiple therapies are now being studied in randomized clinical trials, with the goal of enhancing the effectiveness of targeted therapy for patients with advanced lung cancer.

14.
Oncologist ; 29(7): 609-618, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38761385

RESUMEN

BACKGROUND: The role of tyrosine kinase inhibitors (TKIs) in early-stage and metastatic oncogene-driven non-small cell lung cancer (NSCLC) is established, but it remains unknown how best to integrate TKIs with concurrent chemoradiotherapy (cCRT) in locally advanced disease. The phase 2 ASCENT trial assessed the efficacy and safety of afatinib and cCRT with or without surgery in locally advanced epidermal growth factor receptor (EGFR)-mutant NSCLC. PATIENTS AND METHODS: Adults ≥18 years with histologically confirmed stage III (AJCC 7th edition) NSCLC with activating EGFR mutations were enrolled at Mass General and Dana-Farber/Brigham Cancer Centers, Boston, Massachusetts. Patients received induction afatinib 40 mg daily for 2 months, then cisplatin 75 mg/m2 and pemetrexed 500 mg/m2 IV every 3 weeks during RT (definitive or neoadjuvant dosing). Patients with resectable disease underwent surgery. All patients were offered consolidation afatinib for 2 years. The primary endpoint was the objective response rate (ORR) to induction TKI. Secondary endpoints were safety, conversion to operability, progression-free survival (PFS), and overall survival (OS). Analyses were performed on the intention-to-treat population. RESULTS: Nineteen patients (median age 56 years; 74% female) were enrolled. ORR to induction afatinib was 63%. Seventeen patients received cCRT; 2/9 previously unresectable became resectable. Ten underwent surgery; 6 had a major or complete pathological response. Thirteen received consolidation afatinib. With a median follow-up of 5.0 years, median PFS and OS were 2.6 (95% CI, 1.4-3.1) and 5.8 years (2.9-NR), respectively. Sixteen recurred or died; 6 recurrences were isolated to CNS. The median time to progression after stopping consolidation TKI was 2.9 months (95% CI, 1.1-7.2). Four developed grade 2 pneumonitis. There were no treatment-related deaths. CONCLUSION: We explored the efficacy of combining TKI with cCRT in oncogene-driven NSCLC. Induction TKI did not compromise subsequent receipt of multimodality therapy. PFS was promising, but the prevalence of CNS-only recurrences and rapid progression after TKI discontinuation speak to unmet needs in measuring and eradicating micrometastatic disease.


Asunto(s)
Afatinib , Carcinoma de Pulmón de Células no Pequeñas , Quimioradioterapia , Receptores ErbB , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Femenino , Masculino , Afatinib/uso terapéutico , Afatinib/farmacología , Persona de Mediana Edad , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/radioterapia , Anciano , Receptores ErbB/genética , Quimioradioterapia/métodos , Mutación , Adulto , Estadificación de Neoplasias , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
15.
N Engl J Med ; 384(25): 2382-2393, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34161704

RESUMEN

BACKGROUND: Clinical trials of the KRAS inhibitors adagrasib and sotorasib have shown promising activity in cancers harboring KRAS glycine-to-cysteine amino acid substitutions at codon 12 (KRASG12C). The mechanisms of acquired resistance to these therapies are currently unknown. METHODS: Among patients with KRASG12C -mutant cancers treated with adagrasib monotherapy, we performed genomic and histologic analyses that compared pretreatment samples with those obtained after the development of resistance. Cell-based experiments were conducted to study mutations that confer resistance to KRASG12C inhibitors. RESULTS: A total of 38 patients were included in this study: 27 with non-small-cell lung cancer, 10 with colorectal cancer, and 1 with appendiceal cancer. Putative mechanisms of resistance to adagrasib were detected in 17 patients (45% of the cohort), of whom 7 (18% of the cohort) had multiple coincident mechanisms. Acquired KRAS alterations included G12D/R/V/W, G13D, Q61H, R68S, H95D/Q/R, Y96C, and high-level amplification of the KRASG12C allele. Acquired bypass mechanisms of resistance included MET amplification; activating mutations in NRAS, BRAF, MAP2K1, and RET; oncogenic fusions involving ALK, RET, BRAF, RAF1, and FGFR3; and loss-of-function mutations in NF1 and PTEN. In two of nine patients with lung adenocarcinoma for whom paired tissue-biopsy samples were available, histologic transformation to squamous-cell carcinoma was observed without identification of any other resistance mechanisms. Using an in vitro deep mutational scanning screen, we systematically defined the landscape of KRAS mutations that confer resistance to KRASG12C inhibitors. CONCLUSIONS: Diverse genomic and histologic mechanisms impart resistance to covalent KRASG12C inhibitors, and new therapeutic strategies are required to delay and overcome this drug resistance in patients with cancer. (Funded by Mirati Therapeutics and others; ClinicalTrials.gov number, NCT03785249.).


Asunto(s)
Acetonitrilos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Colorrectales/tratamiento farmacológico , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Mutación , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/uso terapéutico , Neoplasias del Apéndice/tratamiento farmacológico , Neoplasias del Apéndice/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Colorrectales/genética , Humanos , Neoplasias Pulmonares/genética , Conformación Proteica , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/ultraestructura , Piridinas/uso terapéutico
16.
Future Oncol ; 20(15): 969-980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38095056

RESUMEN

After disease progression on EGFR tyrosine kinase inhibitor (TKI) therapy, patients with EGFR-mutated NSCLC who are then treated with platinum-based chemotherapy (PBC) obtain only limited clinical benefit with transient responses. Therapies with greater efficacy and tolerable safety profiles are needed in this setting. The receptor tyrosine kinase HER3 is widely expressed in NSCLC, and increased expression is associated with poor treatment outcomes. In the U31402-A-U102 phase I trial, HER3-DXd showed promising antitumor activity with manageable safety in heavily pre-treated patients with EGFR-mutated NSCLC across a range of tumor HER3 expression levels and EGFR TKI resistance mechanisms. HERTHENA-Lung02 is the first phase III trial to evaluate the safety and efficacy of HER3-DXd versus PBC in patients with progression on a third-generation EGFR TKI. Clinical Trial Registration: NCT05338970 (clinicaltrials.gov); 2021-005879-40 (EudraCT Number).


In some patients with non-small-cell lung cancer, changes (or mutations) in the DNA sequence can alter a protein called EGFR and allow tumors to grow and survive. Drugs called EGFR tyrosine kinase inhibitors (EGFR TKIs for short) are used to treat these tumors by interfering with the abnormal EGFR protein. Treatment with these drugs can work well at first, but some tumors never respond, and for tumors that do respond, the cancer eventually becomes resistant to the EGFR TKI and the drug stops working. Platinum-based chemotherapy is often prescribed after an EGFR TKI stops working; however, platinum-based chemotherapy can provide only temporary control of the tumor growth. Most patients with non-small-cell lung cancer have a protein called HER3 on the surface of their tumor cells. A new drug candidate called patritumab deruxtecan (HER3-DXd) finds tumor cells and attaches to the HER3 protein on their surface. HER3-DXd then moves inside the cancer cells, where a novel antitumor payload is released and kills the tumor cells. This article describes the phase III clinical trial HERTHENA-Lung02 (NCT05338970) that compares the benefit of HER3-DXd to platinum-based chemotherapy for patients who have non-small-cell lung cancer with the abnormal EGFR protein and whose disease stopped responding or never responded to EGFR TKI therapy.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Camptotecina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Ensayos Clínicos Fase III como Asunto , Receptores ErbB/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutación , Inhibidores de Proteínas Quinasas/efectos adversos
17.
Future Oncol ; 19(19): 1319-1329, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37212796

RESUMEN

Limited treatment options exist for EGFR-mutated NSCLC that has progressed after EGFR TKI and platinum-based chemotherapy. HER3 is highly expressed in EGFR-mutated NSCLC, and its expression is associated with poor prognosis in some patients. Patritumab deruxtecan (HER3-DXd) is an investigational, potential first-in-class, HER3-directed antibody-drug conjugate consisting of a HER3 antibody attached to a topoisomerase I inhibitor payload via a tetrapeptide-based cleavable linker. In an ongoing phase I study, HER3-DXd demonstrated promising antitumor activity and a tolerable safety profile in patients with EGFR-mutated NSCLC, with or without identified EGFR TKI resistance mechanisms, providing proof of concept of HER3-DXd. HERTHENA-Lung01 is a global, registrational, phase II trial further evaluating HER3-DXd in previously treated advanced EGFR-mutated NSCLC. Clinical Trial Registration: NCT04619004 (ClinicalTrials.gov); 2020-000730-17 (EudraCT).


This article describes a clinical trial of a new drug to treat non-small-cell lung cancer. About a third of patients with non-small-cell lung cancer have tumors with changes (mutations) in a gene called EGFR, which cause tumors to grow. These patients are treated with EGFR inhibitors and chemotherapy, both of which can stop the tumor from growing for a period of time. When these treatments stop working, new and effective treatments are needed. Most non-small-cell lung cancer tumors have a protein called HER3 on the surface of their cells. Patritumab deruxtecan (HER3-DXd) is a new drug candidate that uses HER3 to get chemotherapy inside tumor cells. In an earlier clinical trial for patients with lung cancer whose disease had grown after multiple treatments, HER3-DXd often shrank tumors or stopped them from growing. The side effects of HER3-DXd were tolerable. The clinical trial described in this publication, HERTHENA-Lung01 (NCT04619004), is testing HER3-DXd in a larger group of patients with non-small-cell lung cancer that has activating mutations in the EGFR gene and for whom previous treatments have stopped working. The results of this study will help doctors and regulators decide if HER3-DXd should be approved and used for patients with non-small-cell lung cancer with EGFR mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Receptores ErbB/genética , Receptor ErbB-3/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Mutación , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase I como Asunto
19.
Bioorg Med Chem Lett ; 68: 128718, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35378251

RESUMEN

The C797S mutation confers resistance to covalent EGFR inhibitors used in the treatment of lung tumors with the activating L858R mutation. Isoindolinones such as JBJ-4-125-02 bind in an allosteric pocket and are active against this mutation, with high selectivity over wild-type EGFR. The most potent examples we developed from that series have a potential chemical instability risk from the combination of the amide and phenol groups. We explored a scaffold hopping approach to identify new series of allosteric EGFR inhibitors that retained good potency in the absence of the phenol group. The 5-F quinazolinone 34 demonstrated tumor regression in an H1975 efficacy model upon once daily oral dosing at 25 mg/kg.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Mutación , Fenoles , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Quinazolinonas/farmacología , Quinazolinonas/uso terapéutico
20.
Nature ; 534(7605): 129-32, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251290

RESUMEN

The epidermal growth factor receptor (EGFR)-directed tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harbouring activating mutations in the EGFR kinase, but resistance arises rapidly, most frequently owing to the secondary T790M mutation within the ATP site of the receptor. Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternative mechanisms of action. Here we describe the rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild-type receptor. The crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays. However, as a single agent it is not effective in blocking EGFR-driven proliferation in cells owing to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state. We observe marked synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by EGFR(L858R/T790M) and by EGFR(L858R/T790M/C797S), a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Bencenoacetamidas/farmacología , Resistencia a Antineoplásicos/genética , Receptores ErbB/genética , Proteínas Mutantes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cetuximab/farmacología , Modelos Animales de Enfermedad , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Múltiples Medicamentos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/patología , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA