Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 51(D1): D328-D336, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36305828

RESUMEN

Upstream open reading frames (uORFs) are initiated by AUG or near-cognate start codons and have been identified in the transcript leader sequences of the majority of eukaryotic transcripts. Functionally, uORFs are implicated in downstream translational regulation of the main protein coding sequence and may serve as a source of non-canonical peptides. Genetic defects in uORF sequences have been linked to the development of various diseases, including cancer. To simplify uORF-related research, the initial release of uORFdb in 2014 provided a comprehensive and manually curated collection of uORF-related literature. Here, we present an updated sequence-based version of uORFdb, accessible at https://www.bioinformatics.uni-muenster.de/tools/uorfdb. The new uORFdb enables users to directly access sequence information, graphical displays, and genetic variation data for over 2.4 million human uORFs. It also includes sequence data of >4.2 million uORFs in 12 additional species. Multiple uORFs can be displayed in transcript- and reading-frame-specific models to visualize the translational context. A variety of filters, sequence-related information, and links to external resources (UCSC Genome Browser, dbSNP, ClinVar) facilitate immediate in-depth analysis of individual uORFs. The database also contains uORF-related somatic variation data obtained from whole-genome sequencing (WGS) analyses of 677 cancer samples collected by the TCGA consortium.


Asunto(s)
Bases de Datos Genéticas , Sistemas de Lectura Abierta , Humanos , Regiones no Traducidas 5' , Codón Iniciador , Eucariontes/genética , Neoplasias/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas
2.
Cell Mol Life Sci ; 79(3): 171, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35239002

RESUMEN

BACKGROUND: Upstream open reading frames (uORFs) represent translational control elements within eukaryotic transcript leader sequences. Recent data showed that uORFs can encode for biologically active proteins and human leukocyte antigen (HLA)-presented peptides in malignant and benign cells suggesting their potential role in cancer cell development and survival. However, the role of uORFs in translational regulation of cancer-associated transcripts as well as in cancer immune surveillance is still incompletely understood. METHODS: We examined the translational regulatory effect of 29 uORFs in 13 cancer-associated genes by dual-luciferase assays. Cellular expression and localization of uORF-encoded peptides (uPeptides) were investigated by immunoblotting and immunofluorescence-based microscopy. Furthermore, we utilized mass spectrometry-based immunopeptidome analyses in an extensive dataset of primary malignant and benign tissue samples for the identification of naturally presented uORF-derived HLA-presented peptides screening for more than 2000 uORFs. RESULTS: We provide experimental evidence for similarly effective translational regulation of cancer-associated transcripts through uORFs initiated by either canonical AUG codons or by alternative translation initiation sites (aTISs). We further demonstrate frequent cellular expression and reveal occasional specific cellular localization of uORF-derived peptides, suggesting uPeptide-specific biological implications. Immunopeptidome analyses delineated a set of 125 naturally presented uORF-derived HLA-presented peptides. Comparative immunopeptidome profiling of malignant and benign tissue-derived immunopeptidomes identified several tumor-associated uORF-derived HLA ligands capable to induce multifunctional T cell responses. CONCLUSION: Our data provide direct evidence for the frequent expression of uPeptides in benign and malignant human tissues, suggesting a potentially widespread function of uPeptides in cancer biology. These findings may inspire novel approaches in direct molecular as well as immunotherapeutic targeting of cancer-associated uORFs and uPeptides.


Asunto(s)
Antígenos de Neoplasias , Neoplasias/genética , Péptidos , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Células HEK293 , Humanos , Sistemas de Lectura Abierta , Péptidos/genética , Péptidos/metabolismo
3.
Front Psychiatry ; 15: 1389021, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800056

RESUMEN

Background: High suicide rates in older adults are a relevant public health concern. Social isolation or widowhood as well as physical decline play a crucial role for suicidality in older adulthood. Previous evidence suggested that demoralization is an important risk factor for suicide. Whether demoralization is a relevant phenomenon in older adulthood which possibly could account for high suicide rates remains unclear. Methods: Demoralization Scale II (DS-II) scores assessed in a survey of the German general population were investigated with respect to older adults (aged ≥ 65 years). DS-II scores were compared between older (≥ 65 years) and younger (< 65 years) adulthood and between young-old (65-74y), middle-old (75-84y), and old-old (85+y) individuals. We tested the impact of sociodemographic factors on DS-II scores within older adults. Results: The sample comprised N = 545 adults ≥ 65 years and N = 1922 adults < 65 years. DS-II scores increased in older compared to younger adults (F(1,2465) = 6.1; p = 0.013; d = 0.09) and further from young-old to old-old (Mdiff = 2.7; 95% CI 0.45, 5.46; p = 0.034). One-fourth of individuals ≥ 65 years and almost half of old-old individuals reported DS-II scores above the cut-off > 5. Living with a partner protected from demoralization in old-old individuals. Discussion: This study provides first evidence for an increased rate of demoralization in very old adults, in particular women, which is partly related to partnership status. We suggest that demoralization is considered as a crucial entity in older adulthood which can be missed by standard psychological screenings.

4.
Cancers (Basel) ; 14(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36551517

RESUMEN

Recent technological advances have facilitated the detection of numerous non-canonical human peptides derived from regulatory regions of mRNAs, long non-coding RNAs, and other cryptic transcripts. In this review, we first give an overview of the classification of these novel peptides and summarize recent improvements in their annotation and detection by ribosome profiling, mass spectrometry, and individual experimental analysis. A large fraction of the novel peptides originates from translation at upstream open reading frames (uORFs) that are located within the transcript leader sequence of regular mRNA. In humans, uORF-encoded peptides (uPeptides) have been detected in both healthy and malignantly transformed cells and emerge as important regulators in cellular and immunological pathways. In the second part of the review, we focus on various functional implications of uPeptides. As uPeptides frequently act at the transition of translational regulation and individual peptide function, we describe the mechanistic modes of translational regulation through ribosome stalling, the involvement in cellular programs through protein interaction and complex formation, and their role within the human leukocyte antigen (HLA)-associated immunopeptidome as HLA uLigands. We delineate how malignant transformation may lead to the formation of novel uORFs, uPeptides, or HLA uLigands and explain their potential implication in tumor biology. Ultimately, we speculate on a potential use of uPeptides as peptide drugs and discuss how uPeptides and HLA uLigands may facilitate translational inhibition of oncogenic protein messages and immunotherapeutic approaches in cancer therapy.

5.
Biomedicines ; 9(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072580

RESUMEN

Upstream open reading frame (uORF)-mediated translational control has emerged as an important regulatory mechanism in human health and disease. However, a systematic search for cancer-associated somatic uORF mutations has not been performed. Here, we analyzed the genetic variability at canonical (uAUG) and alternative translational initiation sites (aTISs), as well as the associated upstream termination codons (uStops) in 3394 whole-exome-sequencing datasets from patient samples of breast, colon, lung, prostate, and skin cancer and of acute myeloid leukemia, provided by The Cancer Genome Atlas research network. We found that 66.5% of patient samples were affected by at least one of 5277 recurrent uORF-associated somatic single nucleotide variants altering 446 uAUG, 347 uStop, and 4733 aTIS codons. While twelve uORF variants were detected in all entities, 17 variants occurred in all five types of solid cancer analyzed here. Highest frequencies of individual somatic variants in the TLSs of NBPF20 and CHCHD2 reached 10.1% among LAML and 8.1% among skin cancer patients, respectively. Functional evaluation by dual luciferase reporter assays identified 19 uORF variants causing significant translational deregulation of the associated main coding sequence, ranging from 1.73-fold induction for an AUG.1 > UUG variant in SETD4 to 0.006-fold repression for a CUG.6 > GUG variant in HLA-DRB1. These data suggest that somatic uORF mutations are highly prevalent in human malignancies and that defective translational regulation of protein expression may contribute to the onset or progression of cancer.

6.
Nat Commun ; 11(1): 3409, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32641778

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is associated with high mortality and therapy resistance. Here, we show that low expression of κB-Ras GTPases is frequently detected in PDAC and correlates with higher histologic grade. In a model of KRasG12D-driven PDAC, loss of κB-Ras accelerates tumour development and shortens median survival. κB-Ras deficiency promotes acinar-to-ductal metaplasia (ADM) during tumour initiation as well as tumour progression through intrinsic effects on proliferation and invasion. κB-Ras proteins are also required for acinar regeneration after pancreatitis, demonstrating a general role in control of plasticity. Molecularly, upregulation of Ral GTPase activity and Sox9 expression underlies the observed phenotypes, identifying a previously unrecognized function of Ral signalling in ADM. Our results provide evidence for a tumour suppressive role of κB-Ras proteins and highlight low κB-Ras levels and consequent loss of Ral control as risk factors, thus emphasizing the necessity for therapeutic options that allow interference with Ral-driven signalling.


Asunto(s)
Células Acinares/metabolismo , Carcinoma Ductal Pancreático/genética , GTP Fosfohidrolasas/genética , Neoplasias Pancreáticas/genética , Pancreatitis/genética , Proteínas/genética , Células Acinares/patología , Anciano , Animales , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Femenino , GTP Fosfohidrolasas/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Estimación de Kaplan-Meier , Masculino , Metaplasia/genética , Metaplasia/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/metabolismo , Proteínas/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Proteínas de Unión al GTP ral/genética , Proteínas de Unión al GTP ral/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA