Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Glia ; 66(6): 1213-1234, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29098734

RESUMEN

Astrocytes are the major glial cell in the central nervous system. These polarized cells possess numerous processes that ensheath the vasculature and contact synapses. Astrocytes play important roles in synaptic signaling, neurotransmitter synthesis and recycling, control of nutrient uptake, and control of local blood flow. Many of these processes depend on local metabolism and/or energy utilization. While astrocytes respond to increases in neuronal activity and metabolic demand by upregulating glycolysis and glycogenolysis, astrocytes also possess significant capacity for oxidative (mitochondrial) metabolism. Mitochondria mediate energy supply and metabolism, cellular survival, ionic homeostasis, and proliferation. These organelles are dynamic structures undergoing extensive fission and fusion, directed movement along cytoskeletal tracts, and degradation. While many of the mechanisms underlying the dynamics of these organelles and their physiologic roles have been characterized in neurons and other cells, the roles that mitochondrial dynamics play in glial physiology is less well understood. Recent work from several laboratories has demonstrated that mitochondria are present within the fine processes of astrocytes, that their movement is regulated, and that they contribute to local Ca2+ signaling within the astrocyte. They likely play a role in local ATP production and metabolism, particularly that of glutamate. Here we will review these and other findings describing the mechanism by which mitochondrial dynamics are regulated in astrocytes, how mitochondrial dynamics might influence astrocyte and brain metabolism, and draw parallels to mitochondrial dynamics in neurons. Additionally, we present new analyses of the size, distribution, and dynamics of mitochondria in astrocytes performed using in vivo using 2-photon microscopy.


Asunto(s)
Astrocitos/fisiología , Mitocondrias/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Humanos
2.
J Neurosci ; 36(27): 7109-27, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27383588

RESUMEN

UNLABELLED: Recently, mitochondria have been localized to astrocytic processes where they shape Ca(2+) signaling; this relationship has not been examined in models of ischemia/reperfusion. We biolistically transfected astrocytes in rat hippocampal slice cultures to facilitate fluorescent confocal microscopy, and subjected these slices to transient oxygen/glucose deprivation (OGD) that causes delayed excitotoxic death of CA1 pyramidal neurons. This insult caused a delayed loss of mitochondria from astrocytic processes and increased colocalization of mitochondria with the autophagosome marker LC3B. The losses of neurons in area CA1 and mitochondria in astrocytic processes were blocked by ionotropic glutamate receptor (iGluR) antagonists, tetrodotoxin, ziconotide (Ca(2+) channel blocker), two inhibitors of reversed Na(+)/Ca(2+) exchange (KB-R7943, YM-244769), or two inhibitors of calcineurin (cyclosporin-A, FK506). The effects of OGD were mimicked by NMDA. The glutamate uptake inhibitor (3S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartate increased neuronal loss after OGD or NMDA, and blocked the loss of astrocytic mitochondria. Exogenous glutamate in the presence of iGluR antagonists caused a loss of mitochondria without a decrease in neurons in area CA1. Using the genetic Ca(2+) indicator Lck-GCaMP-6S, we observed two types of Ca(2+) signals: (1) in the cytoplasm surrounding mitochondria (mitochondrially centered) and (2) traversing the space between mitochondria (extramitochondrial). The spatial spread, kinetics, and frequency of these events were different. The amplitude of both types was doubled and the spread of both types changed by ∼2-fold 24 h after OGD. Together, these data suggest that pathologic activation of glutamate transport and increased astrocytic Ca(2+) through reversed Na(+)/Ca(2+) exchange triggers mitochondrial loss and dramatic increases in Ca(2+) signaling in astrocytic processes. SIGNIFICANCE STATEMENT: Astrocytes, the most abundant cell type in the brain, are vital integrators of signaling and metabolism. Each astrocyte consists of many long, thin branches, called processes, which ensheathe vasculature and thousands of synapses. Mitochondria occupy the majority of each process. This occupancy is decreased by ∼50% 24 h after an in vitro model of ischemia/reperfusion injury, due to delayed fragmentation and mitophagy. The mechanism appears to be independent of neuropathology, instead involving an extended period of high glutamate uptake into astrocytes. Our data suggest that mitochondria serve as spatial buffers, and possibly even as a source of calcium signals in astrocytic processes. Loss of mitochondria resulted in drastically altered calcium signaling that could disrupt neurovascular coupling and gliotransmission.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/ultraestructura , Señalización del Calcio/fisiología , Glucosa/deficiencia , Hipocampo/patología , Hipoxia/patología , Mitocondrias/patología , Potenciales de Acción/efectos de los fármacos , Animales , Astrocitos/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/genética , Inhibidores Enzimáticos/farmacología , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Técnicas In Vitro , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/efectos de los fármacos , Técnicas de Cultivo de Órganos , Ratas , Ratas Transgénicas , Bloqueadores de los Canales de Sodio/farmacología , Tacrolimus/farmacología , Tetrodotoxina/farmacología , Factores de Tiempo
3.
J Neurosci ; 35(45): 15199-213, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558789

RESUMEN

We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na(+)/Ca(2+)-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca(2+) signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca(2+). As recently reported, we observed spontaneous Ca(2+) spikes with half-lives of ∼1 s that spread ∼6 µm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca(2+) spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca(2+) signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca(2+)-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1(KK) had a modest effect on the frequency of these Ca(2+) spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca(2+) followed by an increase in the decay time and the spread of the spontaneous Ca(2+) spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca(2+). Together, these studies show that Ca(2+) regulates mitochondrial mobility, and mitochondria in turn regulate Ca(2+) signals in astrocyte processes. SIGNIFICANCE STATEMENT: In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca(2+) buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response to neuronal activity and glutamate uptake. Here, we demonstrate a mechanism by which mitochondria are immobilized in astrocytes subsequent to increases in intracellular [Ca(2+)] and provide evidence that mitochondria contribute to the compartmentalization of spontaneous Ca(2+) signals in astrocyte processes. Immobilization of mitochondria at sites of glutamate uptake in astrocyte processes provides a mechanism to coordinate increases in activity with increases in mitochondrial metabolism.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Hipocampo/fisiología , Dinámicas Mitocondriales/fisiología , Animales , Animales Recién Nacidos , Transporte Biológico/fisiología , Femenino , Hipocampo/citología , Masculino , Técnicas de Cultivo de Órganos , Ratas
4.
J Neurosci ; 34(5): 1613-24, 2014 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-24478345

RESUMEN

Within neurons, mitochondria are nonuniformly distributed and are retained at sites of high activity and metabolic demand. Glutamate transport and the concomitant activation of the Na(+)/K(+)-ATPase represent a substantial energetic demand on astrocytes. We hypothesized that mitochondrial mobility within astrocytic processes might be regulated by neuronal activity and glutamate transport. We imaged organotypic hippocampal slice cultures of rat, in which astrocytes maintain their highly branched morphologies and express glutamate transporters. Using time-lapse confocal microscopy, the mobility of mitochondria within individual astrocytic processes and neuronal dendrites was tracked. Within neurons, a greater percentage of mitochondria were mobile than in astrocytes. Furthermore, they moved faster and farther than in astrocytes. Inhibiting neuronal activity with tetrodotoxin (TTX) increased the percentage of mobile mitochondria in astrocytes. Mitochondrial movement in astrocytes was inhibited by vinblastine and cytochalasin D, demonstrating that this mobility depends on both the microtubule and actin cytoskeletons. Inhibition of glutamate transport tripled the percentage of mobile mitochondria in astrocytes. Conversely, application of the transporter substrate d-aspartate reversed the TTX-induced increase in the percentage of mobile mitochondria. Inhibition of reversed Na(+)/Ca(2+) exchange also increased the percentage of mitochondria that were mobile. Last, we demonstrated that neuronal activity increases the probability that mitochondria appose GLT-1 particles within astrocyte processes, without changing the proximity of GLT-1 particles to VGLUT1. These results imply that neuronal activity and the resulting clearance of glutamate by astrocytes regulate the movement of astrocytic mitochondria and suggest a mechanism by which glutamate transporters might retain mitochondria at sites of glutamate uptake.


Asunto(s)
Astrocitos/ultraestructura , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/citología , Mitocondrias/fisiología , Neuronas/fisiología , Análisis de Varianza , Anestésicos Locales/farmacología , Animales , Animales Recién Nacidos , Bicuculina/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Antagonistas de Receptores de GABA-A/farmacología , Hipocampo/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Niacinamida/análogos & derivados , Niacinamida/farmacología , Técnicas de Cultivo de Órganos , Ratas , Intercambiador de Sodio-Calcio/antagonistas & inhibidores , Intercambiador de Sodio-Calcio/metabolismo , Tetrodotoxina/farmacología , Tiourea/análogos & derivados , Tiourea/farmacología , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
5.
J Neurosci Res ; 93(7): 999-1008, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25546576

RESUMEN

The glutamate transporter GLT-1 is the major route for the clearance of extracellular glutamate in the forebrain, and most GLT-1 protein is found in astrocytes. This protein is coupled to the Na(+) electrochemical gradient, supporting the active intracellular accumulation of glutamate. We recently used a proteomic approach to identify proteins that may interact with GLT-1 in rat cortex, including the Na(+)/K(+) -ATPase, most glycolytic enzymes, and several mitochondrial proteins. We also showed that most GLT-1 puncta (∼ 70%) are overlapped by mitochondria in astroglial processes in organotypic slices. From this analysis, we proposed that the glycolytic enzyme hexokinase (HK)-1 might physically form a scaffold to link GLT-1 and mitochondria because HK1 is known to interact with the outer mitochondrial membrane protein voltage-dependent anion channel (VDAC). The current study validates the interactions among HK-1, VDAC, and GLT-1 by using forward and reverse immunoprecipitations and provides evidence that a subfraction of HK1 colocalizes with GLT-1 in vivo. A peptide known to disrupt the interaction between HK and VDAC did not disrupt interactions between GLT-1 and several mitochondrial proteins. In parallel experiments, displacement of HK from VDAC reduced GLT-1-mediated glutamate uptake. These results suggest that, although HK1 forms coimmunoprecipitatable complexes with both VDAC and GLT-1, it does not physically link GLT-1 to mitochondrial proteins. However, the interaction of HK1 with VDAC supports GLT-1-mediated transport activity.


Asunto(s)
Corteza Cerebral/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Ácido Glutámico/metabolismo , Hexoquinasa/metabolismo , Proteínas Mitocondriales/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Corteza Cerebral/ultraestructura , Hexoquinasa/química , Inmunoprecipitación , Masculino , Membranas Mitocondriales/metabolismo , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo
6.
bioRxiv ; 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38645059

RESUMEN

HIV infection is an ongoing global health issue despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F) and tenofovir alafenamide (TAF) on expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.

7.
Cells ; 13(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38786105

RESUMEN

HIV infection is an ongoing global health issue, despite increased access to antiretroviral therapy (ART). People living with HIV (PLWH) who are virally suppressed through ART still experience negative health outcomes, including neurocognitive impairment. It is increasingly evident that ART may act independently or in combination with HIV infection to alter the immune state, though this is difficult to disentangle in the clinical population. Thus, these experiments used multiplexed chemokine/cytokine arrays to assess peripheral (plasma) and brain (nucleus accumbens; NAc) expression of immune targets in the presence and absence of ART treatment in the EcoHIV mouse model. The findings identify the effects of EcoHIV infection and of treatment with bictegravir (B), emtricitabine (F), and tenofovir alafenamide (TAF) on the expression of numerous immune targets. In the NAc, this included EcoHIV-induced increases in IL-1α and IL-13 expression and B/F/TAF-induced reductions in KC/CXCL1. In the periphery, EcoHIV suppressed IL-6 and LIF expression, while B/F/TAF reduced IL-12p40 expression. In the absence of ART, IBA-1 expression was negatively correlated with CX3CL1 expression in the NAc of EcoHIV-infected mice. These findings identify distinct effects of ART and EcoHIV infection on peripheral and central immune factors and emphasize the need to consider ART effects on neural and immune outcomes.


Asunto(s)
Infecciones por VIH , Animales , Ratones , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Emtricitabina/uso terapéutico , Emtricitabina/farmacología , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología , Modelos Animales de Enfermedad , Masculino , Tenofovir/uso terapéutico , Tenofovir/farmacología , Tenofovir/análogos & derivados , Citocinas/metabolismo , Compuestos Heterocíclicos con 3 Anillos/farmacología , Compuestos Heterocíclicos con 3 Anillos/uso terapéutico , Ratones Endogámicos C57BL , Inmunidad/efectos de los fármacos , Alanina/análogos & derivados , Alanina/uso terapéutico , Alanina/farmacología , Piperazinas/farmacología , Piperazinas/uso terapéutico , Amidas , Piridonas
8.
bioRxiv ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38659915

RESUMEN

Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) remain persistent public health dilemmas throughout the world. One major hurdle for treating CUD is the increase in cocaine craving and seeking behavior that occurs over a protracted period of abstinence, an effect known as the incubation of craving. Little is known about how HIV may modulate this process. Thus, we sought to examine the impact of chronic HIV infection on the incubation of cocaine craving and associated changes in the central and peripheral immune systems. Here, mice were inoculated with EcoHIV, which is a chimeric HIV-1 construct that produces chronic HIV infection in mice. EcoHIV- and sham-infected mice were conditioned with cocaine daily or intermittently in a conditioned place preference (CPP) paradigm, followed by 1 or 21 days of forced abstinence prior to assessing preference for the cocaine-paired chamber. Under both conditioning regimens, sham mice exhibited incubation of cocaine CPP after 21 days of abstinence. EcoHIV-infected mice conditioned daily with cocaine showed enhanced cocaine seeking at both abstinence timepoints, whereas infected mice conditioned intermittently showed a reversal of the incubation effect, with higher cocaine seeking after 1 day of abstinence compared to 21 days. Analysis of corticolimbic CX3CL1-CX3CR1 and glutamate receptor expression revealed alterations in medial prefrontal cortex (mPFC) CX3CL1 and nucleus accumbens (NAc) GluN2A receptors that correlated with cocaine seeking following daily cocaine exposure. Moreover, examination of peripheral immune markers showed that the effect of abstinence and EcoHIV infection on these measures depended on the cocaine exposure regimen. Altogether, these results highlight the importance of cocaine abstinence and exposure pattern as critical variables that modulate HIV-associated neuroimmune outcomes and relapse vulnerability.

9.
Cells ; 13(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38994979

RESUMEN

HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.


Asunto(s)
Encéfalo , Infecciones por VIH , VIH-1 , Humanos , Encéfalo/virología , Encéfalo/patología , VIH-1/fisiología , Infecciones por VIH/virología , Infecciones por VIH/patología , Adulto , Neuronas/virología , Neuronas/metabolismo , Macrófagos/virología , Macrófagos/metabolismo , Astrocitos/virología , Linfocitos T CD4-Positivos/virología , Técnicas de Cultivo de Tejidos
10.
J Neurosci ; 31(50): 18275-88, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22171032

RESUMEN

Efficient excitatory transmission depends on a family of transporters that use the Na(+)-electrochemical gradient to maintain low synaptic concentrations of glutamate. These transporters consume substantial energy in the spatially restricted space of fine astrocytic processes. GLT-1 (EAAT2) mediates the bulk of this activity in forebrain. To date, relatively few proteins have been identified that associate with GLT-1. In the present study, GLT-1 immunoaffinity isolates were prepared from rat cortex using three strategies and analyzed by liquid chromatography-coupled tandem mass spectrometry. In addition to known interacting proteins, the analysis identified glycolytic enzymes and outer mitochondrial proteins. Using double-label immunofluorescence, GLT-1 was shown to colocalize with the mitochondrial matrix protein, ubiquinol-cytochrome c reductase core protein 2 or the inner mitochondrial membrane protein, ADP/ATP translocase, in rat cortex. In biolistically transduced hippocampal slices, fluorescently tagged GLT-1 puncta overlapped with fluorescently tagged mitochondria along fine astrocytic processes. In a Monte Carlo-type computer simulation, this overlap was significantly more frequent than would occur by chance. Furthermore, fluorescently tagged hexokinase-1 overlapped with mitochondria or GLT-1, strongly suggesting that GLT-1, mitochondria, and the first step in glycolysis are cocompartmentalized in astrocytic processes. Acute inhibition of glycolysis or oxidative phosphorylation had no effect on glutamate uptake in hippocampal slices, but simultaneous inhibition of both processes significantly reduced transport. Together with previous results, these studies show that GLT-1 cocompartmentalizes with Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondria, providing a mechanism to spatially match energy and buffering capacity to the demands imposed by transport.


Asunto(s)
Astrocitos/metabolismo , Transportador 2 de Aminoácidos Excitadores/metabolismo , Hexoquinasa/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Masculino , Translocasas Mitocondriales de ADP y ATP/metabolismo , Ratas , Ratas Sprague-Dawley
11.
Front Cell Neurosci ; 16: 831061, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35308116

RESUMEN

In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).

12.
Oncogene ; 41(14): 2122-2136, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35190642

RESUMEN

Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.


Asunto(s)
Glioblastoma , Acetato CoA Ligasa/metabolismo , Acetatos/metabolismo , Acetatos/farmacología , Línea Celular Tumoral , Humanos , N-Acetilglucosaminiltransferasas/metabolismo , Fosforilación
13.
J Vis Exp ; (175)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34633392

RESUMEN

Brain metastasis is a serious consequence of breast cancer for women as these tumors are difficult to treat and are associated with poor clinical outcomes. Preclinical mouse models of breast cancer brain metastatic (BCBM) growth are useful but are expensive, and it is difficult to track live cells and tumor cell invasion within the brain parenchyma. Presented here is a protocol for ex vivo brain slice cultures from xenografted mice containing intracranially injected breast cancer brain-seeking clonal sublines. MDA-MB-231BR luciferase tagged cells were injected intracranially into the brains of Nu/Nu female mice, and following tumor formation, the brains were isolated, sliced, and cultured ex vivo. The tumor slices were imaged to identify tumor cells expressing luciferase and monitor their proliferation and invasion in the brain parenchyma for up to 10 days. Further, the protocol describes the use of time-lapse microscopy to image the growth and invasive behavior of the tumor cells following treatment with ionizing radiation or chemotherapy. The response of tumor cells to treatments can be visualized by live-imaging microscopy, measuring bioluminescence intensity, and performing histology on the brain slice containing BCBM cells. Thus, this ex vivo slice model may be a useful platform for rapid testing of novel therapeutic agents alone or in combination with radiation to identify drugs personalized to target an individual patient's breast cancer brain metastatic growth within the brain microenvironment.


Asunto(s)
Neoplasias Encefálicas , Fenómenos Fisiológicos del Sistema Nervioso , Animales , Encéfalo , Femenino , Luciferasas , Ratones , Ratones Desnudos , Microambiente Tumoral
14.
Curr Protoc Neurosci ; 92(1): e94, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32176459

RESUMEN

Mitochondria are essential organelles involved in energy supply and calcium homeostasis. The regulated distribution of mitochondria in polarized cells, particularly neurons, is thought to be essential to these roles. Altered mitochondrial function and impairment of mitochondrial distribution and dynamics is implicated in a number of neurologic disorders. Several recent reports have described mechanisms regulating the activity-dependent distribution of mitochondria within astrocyte processes and the functional consequences of altered mitochondrial transport. Here we provide an ex vivo method for monitoring the transport of mitochondria within the processes of astrocytes using organotypic "slice" cultures. These methods can be easily adapted to investigate a wide range of mitochondrial behaviors, including fission and fusion dynamics, mitophagy, and calcium signaling in astrocytes and other cell types of the central nervous system. © 2020 by John Wiley & Sons, Inc. Basic Protocol 1: Preparation of brain slices Basic Protocol 2: Preparation of gene gun bullets Basic Protocol 3: Gene gun transfection of slices Basic Protocol 4: Visualization and tracking of mitochondrial movement Alternate Protocol: Transduction of EGFP-mito via viral injection of the neonatal mouse brain.


Asunto(s)
Astrocitos/metabolismo , Movimiento Celular/fisiología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/fisiología , Animales , Señalización del Calcio/fisiología , Células Cultivadas/metabolismo , Ratones , Neuronas/fisiología , Transporte de Proteínas/fisiología
15.
Pediatr Res ; 66(3): 317-22, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581830

RESUMEN

A patient is reported who presented in the newborn period with an unusual combination of congenital lactic acidosis and bilateral calcifications in the adrenal medulla, visible on standard abdominal x-ray and ultrasound examination. At birth, the proband was hypotonic and dystrophic. She developed respiratory insufficiency, cardiomegaly, and hepatomegaly and died at the age of 38 d. Examination of postmortem heart muscle revealed multiple areas of myocardial infarction with dystrophic calcifications. In the medulla of the adrenal glands, foci of necrosis and calcifications, and in the liver, multiple zones of necrosis and iron deposition were detected. Biochemical analysis in heart muscle revealed a decreased activity of complex IV of the oxidative phosphorylation (OXPHOS) and in liver a combined deficiency involving the complexes I, III, IV, and V. The findings were suggestive of a defect in biosynthesis of the mitochondrially encoded subunits of the OXPHOS complexes. Extensive analysis of the proband's mitochondrial DNA revealed neither pathogenic deletions and point mutations nor copy number alterations. Relative amounts of mitochondrial transcripts for the ribosomal mitochondrial 12S rRNA (12S) and mitochondrial 16S rRNA (16S) were significantly increased suggesting a compensatory mechanism involving the transcription machinery to low levels of translation. The underlying molecular defect has not been identified yet.


Asunto(s)
Acidosis Láctica , Glándulas Suprarrenales/patología , Calcinosis , Recién Nacido/metabolismo , Acidosis Láctica/congénito , Acidosis Láctica/metabolismo , Acidosis Láctica/patología , Glándulas Suprarrenales/metabolismo , Calcinosis/metabolismo , Calcinosis/patología , Análisis Mutacional de ADN , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones , Resultado Fatal , Femenino , Fibroblastos/metabolismo , Humanos , Hígado/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Miocardio/metabolismo , Subunidades de Proteína/metabolismo
16.
Neurochem Int ; 98: 56-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27013346

RESUMEN

In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.


Asunto(s)
Astrocitos/metabolismo , Química Encefálica/fisiología , Metabolismo Energético/fisiología , Neuroglía/metabolismo , Transducción de Señal/fisiología , Proteínas de Transporte Vesicular de Glutamato/fisiología , Animales , Química Encefálica/genética , Metabolismo Energético/genética , Humanos , Transducción de Señal/genética , Proteínas de Transporte Vesicular de Glutamato/genética , Proteínas de Transporte Vesicular de Glutamato/metabolismo
17.
Sci Signal ; 8(384): ra68, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26152695

RESUMEN

Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.


Asunto(s)
Encéfalo/metabolismo , Cisteína/metabolismo , Ácido Glutámico/metabolismo , Óxido Nítrico/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Cromatografía Liquida , Cisteína/análogos & derivados , Cisteína/genética , Transportador 2 de Aminoácidos Excitadores/genética , Transportador 2 de Aminoácidos Excitadores/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Datos de Secuencia Molecular , Mutación , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Ratas , S-Nitrosotioles/metabolismo , Espectrometría de Masas en Tándem
18.
Neurochem Int ; 73: 152-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24334055

RESUMEN

Excitatory amino acid carrier 1 (EAAC1 also called EAAT3) is a Na(+)-dependent glutamate transporter expressed by both glutamatergic and GABAergic neurons. It provides precursors for the syntheses of glutathione and GABA and contributes to the clearance of synaptically released glutamate. Mice deleted of EAAC1 are more susceptible to neurodegeneration in models of ischemia, Parkinson's disease, and aging. Antisense knock-down of EAAC1 causes an absence seizure-like phenotype. Additionally, EAAC1 expression increases after chemonvulsant-induced seizures in rodent models and in tissue specimens from patients with refractory epilepsy. The goal of the present study was to determine if the absence of EAAC1 affects the sensitivity of mice to seizure-induced cell death. A chemoconvulsant dose of pilocarpine was administered to EAAC1(-/-) mice and to wild-type controls. Although EAAC1(-/-) mice experienced increased latency to seizure onset, no significant differences in behavioral seizure severity or mortality were observed. We examined EAAC1 immunofluorescence 24h after pilocarpine administration and confirmed that pilocarpine causes an increase in EAAC1 protein. Forty-eight hours after induction of seizures, cell death was measured in hippocampus and in cortex using Fluoro-Jade C. Surprisingly, there was ∼2-fold more cell death in area CA1 of wild-type mice than in the corresponding regions of the EAAC1(-/-) mice. Together, these studies indicate that absence of EAAC1 results in either a decrease in pilocarpine-induced seizures that is not detectable by behavioral criteria (surprising, since EAAC1 provides glutamate for GABA synthesis), or that the absence of EAAC1 results in less pilocarpine/seizure-induced cell death, possible explanations as discussed.


Asunto(s)
Transportador 3 de Aminoácidos Excitadores/genética , Neuronas/patología , Estado Epiléptico/patología , Animales , Región CA1 Hipocampal/patología , Muerte Celular/efectos de los fármacos , Convulsivantes , Eliminación de Gen , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pilocarpina , Estado Epiléptico/inducido químicamente
19.
Neurochem Int ; 61(4): 566-74, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22306776

RESUMEN

GLAST is the predominant glutamate transporter in the cerebellum and contributes substantially to glutamate transport in forebrain. This astroglial glutamate transporter quickly binds and clears synaptically released glutamate and is principally responsible for ensuring that synaptic glutamate concentrations remain low. This process is associated with a significant energetic cost. Compartmentalization of GLAST with mitochondria and proteins involved in energy metabolism could provide energetic support for glutamate transport. Therefore, we performed immunoprecipitation and co-localization experiments to determine if GLAST might co-compartmentalize with proteins involved in energy metabolism. GLAST was immunoprecipitated from rat cerebellum and subunits of the Na(+)/K(+) ATPase, glycolytic enzymes, and mitochondrial proteins were detected. GLAST co-localized with mitochondria in cerebellar tissue. GLAST also co-localized with mitochondria in fine processes of astrocytes in organotypic hippocampal slice cultures. From these data, we hypothesized that mitochondria participate in a macromolecular complex with GLAST to support oxidative metabolism of transported glutamate. To determine the functional metabolic role of this complex, we measured CO(2) production from radiolabeled glutamate in cultured astrocytes and compared it to overall glutamate uptake. Within 15 min, 9% of transported glutamate was converted to CO(2). This CO(2) production was blocked by inhibitors of glutamate transport and glutamate dehydrogenase, but not by an inhibitor of glutamine synthetase. Our data support a model in which GLAST exists in a macromolecular complex that allows transported glutamate to be metabolized in mitochondria to support energy production.


Asunto(s)
Transportador 1 de Aminoácidos Excitadores/fisiología , Ácido Glutámico/metabolismo , Animales , Cerebelo/metabolismo , Humanos , Masculino , Ratas , Ratas Sprague-Dawley
20.
Mol Pharmacol ; 72(2): 303-10, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17485565

RESUMEN

Bradykinin produced at sites of tissue injury and inflammation elicits acute pain and alters the sensitivity of nociceptive neurons to subsequent stimuli. We tested the hypothesis that bradykinin could elicit long-lasting changes in nociceptor function by activating members of the nuclear factor of activated T-cells (NFAT) family of transcription factors. Bradykinin activation of B2 receptors evoked concentration-dependent (EC50 = 6.0 +/- 0.3 nM) increases in intracellular Ca2+ concentration ([Ca2+]i) in a proportion of dorsal root ganglion neurons in primary culture. These [Ca2+] increases were sensitive to inhibition of phospholipase C (PLC) and depletion of Ca2+ stores. In neurons expressing a green fluorescent protein (GFP)-NFAT4 fusion protein, a 2-min exposure to bradykinin induced the translocation of GFP-NFAT4 from the cytoplasm to the nucleus. Translocation was partially inhibited by the removal of extracellular Ca2+ and was blocked by inhibition of calcineurin. Furthermore, bradykinin triggered a concentration-dependent increase in NFAT-mediated transcription of a luciferase gene reporter (EC50 = 24.2 +/- 0.1 nM). This depended on the B2 receptor, PLC activation, and inositol triphosphate-mediated Ca2+ release. Transcription was not inhibited by capsazepine. Finally, as indicated by quantitative reverse transcription-polymerase chain reaction, bradykinin elicited an increase in cyclooxygenase mRNA. This increase was sensitive to calcineurin and B2 receptor inhibition. These findings suggest a mechanism by which short-lived bradykinin-mediated stimuli can enact lasting changes in nociceptor function and sensitivity.


Asunto(s)
Bradiquinina/farmacología , Ganglios Espinales/metabolismo , Factores de Transcripción NFATC/fisiología , Transcripción Genética/efectos de los fármacos , Animales , Calcio/metabolismo , Células Cultivadas , Ciclooxigenasa 2/genética , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Receptor de Bradiquinina B2/fisiología , Canales Catiónicos TRPV/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA