Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 504
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(7): 477-494, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36781955

RESUMEN

All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Reparación del ADN/genética , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Genoma , Daño del ADN/genética
3.
Cell ; 177(4): 821-836.e16, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30982602

RESUMEN

Whole-genome-sequencing (WGS) of human tumors has revealed distinct mutation patterns that hint at the causative origins of cancer. We examined mutational signatures in 324 WGS human-induced pluripotent stem cells exposed to 79 known or suspected environmental carcinogens. Forty-one yielded characteristic substitution mutational signatures. Some were similar to signatures found in human tumors. Additionally, six agents produced double-substitution signatures and eight produced indel signatures. Investigating mutation asymmetries across genome topography revealed fully functional mismatch and transcription-coupled repair pathways. DNA damage induced by environmental mutagens can be resolved by disparate repair and/or replicative pathways, resulting in an assortment of signature outcomes even for a single agent. This compendium of experimentally induced mutational signatures permits further exploration of roles of environmental agents in cancer etiology and underscores how human stem cell DNA is directly vulnerable to environmental agents. VIDEO ABSTRACT.


Asunto(s)
Carcinógenos Ambientales/clasificación , Neoplasias/genética , Carcinógenos Ambientales/efectos adversos , Daño del ADN/genética , Análisis Mutacional de ADN/métodos , Reparación del ADN/genética , Replicación del ADN , Perfil Genético , Genoma Humano/genética , Humanos , Mutación INDEL/genética , Mutagénesis , Mutación/genética , Células Madre Pluripotentes/metabolismo , Secuenciación Completa del Genoma/métodos
4.
Genes Dev ; 35(9-10): 602-618, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888558

RESUMEN

The DNA damage response (DDR) fulfils essential roles to preserve genome integrity. Targeting the DDR in tumors has had remarkable success over the last decade, exemplified by the licensing of PARP inhibitors for cancer therapy. Recent studies suggest that the application of DDR inhibitors impacts on cellular innate and adaptive immune responses, wherein key DNA repair factors have roles in limiting chronic inflammatory signaling. Antitumor immunity plays an emerging part in cancer therapy, and extensive efforts have led to the development of immune checkpoint inhibitors overcoming immune suppressive signals in tumors. Here, we review the current understanding of the molecular mechanisms underlying DNA damage-triggered immune responses, including cytosolic DNA sensing via the cGAS/STING pathway. We highlight the implications of DDR components for therapeutic outcomes of immune checkpoint inhibitors or their use as biomarkers. Finally, we discuss the rationale for novel combinations of DDR inhibitors with antagonists of immune checkpoints and current hindrances limiting their broader therapeutic applications.


Asunto(s)
Reparación del ADN/fisiología , Inmunidad Celular/genética , Inmunoterapia , Neoplasias/terapia , Inmunidad Adaptativa/genética , Daño del ADN/inmunología , Receptores con Dominio Discoidina/antagonistas & inhibidores , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
5.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760575

RESUMEN

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Decitabina , Ubiquitina-Proteína Ligasas , Decitabina/farmacología , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Metilación de ADN/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Animales , Sumoilación/efectos de los fármacos
6.
Cell ; 153(3): 513-5, 2013 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-23622237

RESUMEN

Trimethylation of histone H3 on Lys36 (H3K36me3) by SETD2 is linked to actively transcribed regions. Li et al. identify a novel role for H3K36me3 that facilitates DNA mismatch repair (MMR) in cells by targeting the MMR machinery to chromatin during the cell cycle, thereby explaining certain cases of MMR-defective cancers.

7.
EMBO J ; 42(18): e113190, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37492888

RESUMEN

DNA single-strand breaks (SSBs) disrupt DNA replication and induce chromosome breakage. However, whether SSBs induce chromosome breakage when present behind replication forks or ahead of replication forks is unclear. To address this question, we exploited an exquisite sensitivity of SSB repair-defective human cells lacking PARP activity or XRCC1 to the thymidine analogue 5-chloro-2'-deoxyuridine (CldU). We show that incubation with CldU in these cells results in chromosome breakage, sister chromatid exchange, and cytotoxicity by a mechanism that depends on the S phase activity of uracil DNA glycosylase (UNG). Importantly, we show that CldU incorporation in one cell cycle is cytotoxic only during the following cell cycle, when it is present in template DNA. In agreement with this, while UNG induces SSBs both in nascent strands behind replication forks and in template strands ahead of replication forks, only the latter trigger fork collapse and chromosome breakage. Finally, we show that BRCA-defective cells are hypersensitive to CldU, either alone and/or in combination with PARP inhibitor, suggesting that CldU may have clinical utility.


Asunto(s)
Antineoplásicos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Rotura Cromosómica , Reparación del ADN , Replicación del ADN , ADN , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo
8.
EMBO J ; 41(21): e111338, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36121125

RESUMEN

The balance between self-renewal and differentiation in human foetal lung epithelial progenitors controls the size and function of the adult organ. Moreover, progenitor cell gene regulation networks are employed by both regenerating and malignant lung cells, where modulators of their effects could potentially be of therapeutic value. Details of the molecular networks controlling human lung progenitor self-renewal remain unknown. We performed the first CRISPRi screen in primary human lung organoids to identify transcription factors controlling progenitor self-renewal. We show that SOX9 promotes proliferation of lung progenitors and inhibits precocious airway differentiation. Moreover, by identifying direct transcriptional targets using Targeted DamID, we place SOX9 at the centre of a transcriptional network, which amplifies WNT and RTK signalling to stabilise the progenitor cell state. In addition, the proof-of-principle CRISPRi screen and Targeted DamID tools establish a new workflow for using primary human organoids to elucidate detailed functional mechanisms underlying normal development and disease.


Asunto(s)
Pulmón , Factor de Transcripción SOX9 , Células Madre , Humanos , Diferenciación Celular/fisiología , Pulmón/embriología , Transducción de Señal , Factor de Transcripción SOX9/metabolismo , Células Madre/metabolismo
9.
Mol Cell ; 72(4): 625-635.e4, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30454561

RESUMEN

In response to genotoxic stress, cells activate a signaling cascade known as the DNA damage checkpoint (DDC) that leads to a temporary cell cycle arrest and activation of DNA repair mechanisms. Because persistent DDC activation compromises cell viability, this process must be tightly regulated. However, despite its importance, the mechanisms regulating DDC recovery are not completely understood. Here, we identify a DNA-damage-regulated histone modification in Saccharomyces cerevisiae, phosphorylation of H4 threonine 80 (H4T80ph), and show that it triggers checkpoint inactivation. H4T80ph is critical for cell survival to DNA damage, and its absence causes impaired DDC recovery and persistent cell cycle arrest. We show that, in response to genotoxic stress, p21-activated kinase Cla4 phosphorylates H4T80 to recruit Rtt107 to sites of DNA damage. Rtt107 displaces the checkpoint adaptor Rad9, thereby interrupting the checkpoint-signaling cascade. Collectively, our results indicate that H4T80ph regulates DDC recovery.


Asunto(s)
Daño del ADN , Reparación del ADN , Histonas/genética , Histonas/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular , Quinasa de Punto de Control 2/genética , Quinasa de Punto de Control 2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal
10.
Nature ; 568(7753): 576, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30976101

RESUMEN

This Article has been retracted; see accompanying Retraction.

11.
Nature ; 573(7774): 416-420, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511699

RESUMEN

Despite major progress in defining the functional roles of genes, a complete understanding of their influences is far from being realized, even in relatively simple organisms. A major milestone in this direction arose via the completion of the yeast Saccharomyces cerevisiae gene-knockout collection (YKOC), which has enabled high-throughput reverse genetics, phenotypic screenings and analyses of synthetic-genetic interactions1-3. Ensuing experimental work has also highlighted some inconsistencies and mistakes in the YKOC, or genome instability events that rebalance the effects of specific knockouts4-6, but a complete overview of these is lacking. The identification and analysis of genes that are required for maintaining genomic stability have traditionally relied on reporter assays and on the study of deletions of individual genes, but whole-genome-sequencing technologies now enable-in principle-the direct observation of genome instability globally and at scale. To exploit this opportunity, we sequenced the whole genomes of nearly all of the 4,732 strains comprising the homozygous diploid YKOC. Here, by extracting information on copy-number variation of tandem and interspersed repetitive DNA elements, we describe-for almost every single non-essential gene-the genomic alterations that are induced by its loss. Analysis of this dataset reveals genes that affect the maintenance of various genomic elements, highlights cross-talks between nuclear and mitochondrial genome stability, and shows how strains have genetically adapted to life in the absence of individual non-essential genes.


Asunto(s)
Genoma Fúngico/genética , Inestabilidad Genómica , Saccharomyces cerevisiae/genética , Adaptación Biológica/genética , Técnicas de Inactivación de Genes , Genoma Mitocondrial/genética , Secuenciación Completa del Genoma
12.
Mol Cell ; 66(6): 801-817, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-28622525

RESUMEN

In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Unión al Calcio/metabolismo , Núcleo Celular/enzimología , Daño del ADN , Reparación del ADN , Animales , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/historia , Proteínas de Unión al Calcio/antagonistas & inhibidores , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/historia , Reparación del ADN/efectos de los fármacos , Activación Enzimática , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Modelos Moleculares , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fosforilación , Conformación Proteica , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/metabolismo
13.
Cell ; 139(1): 100-11, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19804756

RESUMEN

The Mre11/Rad50/Nbs1 protein complex plays central enzymatic and signaling roles in the DNA-damage response. Nuclease (Mre11) and scaffolding (Rad50) components of MRN have been extensively characterized, but the molecular basis of Nbs1 function has remained elusive. Here, we present a 2.3A crystal structure of the N-terminal region of fission yeast Nbs1, revealing an unusual but conserved architecture in which the FHA- and BRCT-repeat domains structurally coalesce. We demonstrate that diphosphorylated pSer-Asp-pThr-Asp motifs, recently identified as multicopy docking sites within Mdc1, are evolutionarily conserved Nbs1 binding targets. Furthermore, we show that similar phosphomotifs within Ctp1, the fission yeast ortholog of human CtIP, promote interactions with the Nbs1 FHA domain that are necessary for Ctp1-dependent resistance to DNA damage. Finally, we establish that human Nbs1 interactions with Mdc1 occur through both its FHA- and BRCT-repeat domains, suggesting how their structural and functional interdependence underpins Nbs1 adaptor functions in the DNA-damage response.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Reparación del ADN , Proteínas Nucleares/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosforilación , Estructura Terciaria de Proteína , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Alineación de Secuencia
14.
Anesth Analg ; 138(5): 980-991, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37801601

RESUMEN

Respect for patient autonomy is a pillar of medical ethics, manifested predominantly through informed consent. Mandatory (routine) nonconsented preoperative urine pregnancy testing does not adequately respect patient autonomy, is potentially coercive, and has the potential to cause harm medically, psychologically, socially, and financially. Inaccuracies in pregnancy testing can result in false-positive and false-negative results, especially in early pregnancy. There is substantial scientific evidence that anesthesia is not harmful to the fetus, raising the question of whether pregnancy testing provides substantial benefit to the patient. Not performing a preanesthesia pregnancy test has not been associated with significant medicolegal consequences. We review the ethical implications of mandatory preanesthesia pregnancy testing in light of these facts.


Asunto(s)
Consentimiento Informado , Pruebas de Embarazo , Embarazo , Femenino , Humanos
15.
Mol Cell ; 61(3): 449-460, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26748828

RESUMEN

G-quadruplex (G4)-forming genomic sequences, including telomeres, represent natural replication fork barriers. Stalled replication forks can be stabilized and restarted by homologous recombination (HR), which also repairs DNA double-strand breaks (DSBs) arising at collapsed forks. We have previously shown that HR facilitates telomere replication. Here, we demonstrate that the replication efficiency of guanine-rich (G-rich) telomeric repeats is decreased significantly in cells lacking HR. Treatment with the G4-stabilizing compound pyridostatin (PDS) increases telomere fragility in BRCA2-deficient cells, suggesting that G4 formation drives telomere instability. Remarkably, PDS reduces proliferation of HR-defective cells by inducing DSB accumulation, checkpoint activation, and deregulated G2/M progression and by enhancing the replication defect intrinsic to HR deficiency. PDS toxicity extends to HR-defective cells that have acquired olaparib resistance through loss of 53BP1 or REV7. Altogether, these results highlight the therapeutic potential of G4-stabilizing drugs to selectively eliminate HR-compromised cells and tumors, including those resistant to PARP inhibition.


Asunto(s)
Aminoquinolinas/farmacología , Antineoplásicos/farmacología , Proteína BRCA1/deficiencia , Proteína BRCA2/deficiencia , Biomarcadores de Tumor/deficiencia , G-Cuádruplex/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Ácidos Picolínicos/farmacología , Animales , Proteína BRCA1/genética , Proteína BRCA2/genética , Biomarcadores de Tumor/genética , Proliferación Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Masculino , Ratones Desnudos , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Interferencia de ARN , Telómero/efectos de los fármacos , Telómero/genética , Telómero/metabolismo , Factores de Tiempo , Transfección , Carga Tumoral/efectos de los fármacos , Proteína 1 de Unión al Supresor Tumoral P53 , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Nucleic Acids Res ; 50(8): 4732-4754, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420136

RESUMEN

SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación del ADN , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Humanos , Análisis por Micromatrices , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación
17.
Genes Dev ; 30(19): 2152-2157, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27798842

RESUMEN

PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf-/- mice, Paxx-/- mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4-/- and Lig4-/- mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.


Asunto(s)
Proteínas de Unión al ADN/genética , Desarrollo Embrionario/genética , Mutaciones Letales Sintéticas/genética , Trisacáridos/genética , Animales , Apoptosis/genética , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Inestabilidad Genómica/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Tolerancia a Radiación/genética , Trisacáridos/metabolismo
18.
Mol Cell ; 60(3): 362-73, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26455393

RESUMEN

Repair of DNA double-strand breaks is crucial for maintaining genome integrity and is governed by post-translational modifications such as protein ubiquitylation. Here, we establish that the deubiquitylating enzyme USP4 promotes DNA-end resection and DNA repair by homologous recombination. We also report that USP4 interacts with CtIP and the MRE11-RAD50-NBS1 (MRN) complex and is required for CtIP recruitment to DNA damage sites. Furthermore, we show that USP4 is ubiquitylated on multiple sites including those on cysteine residues and that deubiquitylation of these sites requires USP4 catalytic activity and is required for USP4 to interact with CtIP/MRN and to promote CtIP recruitment and DNA repair. Lastly, we establish that regulation of interactor binding by ubiquitylation occurs more generally among USP-family enzymes. Our findings thus identify USP4 as a novel DNA repair regulator and invoke a model in which ubiquitin adducts regulate USP enzyme interactions and functions.


Asunto(s)
Roturas del ADN de Doble Cadena , Modelos Biológicos , Reparación del ADN por Recombinación , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinación/fisiología , Ácido Anhídrido Hidrolasas , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Humanos , Proteína Homóloga de MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas
19.
Mol Cell ; 57(6): 1133-1141, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794620

RESUMEN

The Bloom syndrome helicase BLM and topoisomerase-IIß-binding protein 1 (TopBP1) are key regulators of genome stability. It was recently proposed that BLM phosphorylation on Ser338 mediates its interaction with TopBP1, to protect BLM from ubiquitylation and degradation (Wang et al., 2013). Here, we show that the BLM-TopBP1 interaction does not involve Ser338 but instead requires BLM phosphorylation on Ser304. Furthermore, we establish that disrupting this interaction does not markedly affect BLM stability. However, BLM-TopBP1 binding is important for maintaining genome integrity, because in its absence cells display increased sister chromatid exchanges, replication origin firing and chromosomal aberrations. Therefore, the BLM-TopBP1 interaction maintains genome stability not by controlling BLM protein levels, but via another as-yet undetermined mechanism. Finally, we identify critical residues that mediate interactions between TopBP1 and MDC1, and between BLM and TOP3A/RMI1/RMI2. Taken together, our findings provide molecular insights into a key tumor suppressor and genome stability network.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Inestabilidad Genómica , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Proteínas de Ciclo Celular , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Fosforilación , RecQ Helicasas/genética , Serina/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
20.
Nucleic Acids Res ; 49(7): 3919-3931, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33764464

RESUMEN

A single amino acid residue change in the exonuclease domain of human DNA polymerase ϵ, P286R, is associated with the development of colorectal cancers, and has been shown to impart a mutator phenotype. The corresponding Pol ϵ allele in the yeast Saccharomyces cerevisiae (pol2-P301R), was found to drive greater mutagenesis than an entirely exonuclease-deficient Pol ϵ (pol2-4), an unexpected phenotype of ultra-mutagenesis. By studying the impact on mutation frequency, type, replication-strand bias, and sequence context, we show that ultra-mutagenesis is commonly observed in yeast cells carrying a range of cancer-associated Pol ϵ exonuclease domain alleles. Similarities between mutations generated by these alleles and those generated in pol2-4 cells indicate a shared mechanism of mutagenesis that yields a mutation pattern similar to cancer Signature 14. Comparison of POL2 ultra-mutator with pol2-M644G, a mutant in the polymerase domain decreasing Pol ϵ fidelity, revealed unexpected analogies in the sequence context and strand bias of mutations. Analysis of mutational patterns unique to exonuclease domain mutant cells suggests that backtracking of the polymerase, when the mismatched primer end cannot be accommodated in the proofreading domain, results in the observed insertions and T>A mutations in specific sequence contexts.


Asunto(s)
Neoplasias Colorrectales , ADN Polimerasa II , Tasa de Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas de Saccharomyces cerevisiae , Neoplasias Colorrectales/enzimología , Neoplasias Colorrectales/genética , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Replicación del ADN , Humanos , Mutagénesis , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA