RESUMEN
BACKGROUND: One of the most effective strategies to increase phytochemicals production in plant cultures is elicitation. In the present study, we studied the effect of abiotic and biotic elicitors on the growth, key biosynthetic genes expression, antioxidant capacity, and phenolic compounds content in Rhizobium (Agrobacterium) rhizogenes-induced hairy roots cultures of Ficus carica cv. Siah. METHODS: The elicitors included methyl jasmonate (MeJA) as abiotic elicitor, culture filtrate and cell extract of fungus Piriformospora indica as biotic elicitors were prepared to use. The cultures of F. carica hairy roots were exposed to elicitores at different time points. After elicitation treatments, hairy roots were collected, and evaluated for growth index, total phenolic (TPC) and flavonoids (TFC) content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl, DPPH and ferric ion reducing antioxidant power, FRAP assays), expression level of key phenolic/flavonoid biosynthesis genes, and high-performance liquid chromatography (HPLC) analysis of some main phenolic compounds in comparison to control. RESULTS: Elicitation positively or negatively affected the growth, content of phenolic/flavonoid compounds and DPPH and FRAP antioxidant activities of hairy roots cultures in depending of elicitor concentration and exposure time. The maximum expression level of chalcone synthase (CHS: 55.1), flavonoid 3'-hydroxylase (F3'H: 34.33) genes and transcription factors MYB3 (32.22), Basic helix-loop-helix (bHLH: 45.73) was induced by MeJA elicitation, whereas the maximum expression level of phenylalanine ammonia-lyase (PAL: 26.72) and UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT: 27.57) genes was obtained after P. indica culture filtrate elicitation. The P. indica elicitation also caused greatest increase in the content of gallic acid (5848 µg/g), caffeic acid (508.2 µg/g), rutin (43.5 µg/g), quercetin (341 µg/g), and apigenin (1167 µg/g) phenolic compounds. CONCLUSIONS: This study support that elicitation of F. carica cv. Siah hairy roots can be considered as an effective biotechnological method for improved phenolic/flavonoid compounds production, and of course this approach requires further research.
Asunto(s)
Acetatos , Ciclopentanos , Ficus , Oxilipinas , Fenoles , Raíces de Plantas , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Acetatos/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fenoles/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo , Basidiomycota , Reguladores del Crecimiento de las Plantas/metabolismo , AgrobacteriumRESUMEN
BACKGROUND: Ficus carica L., an ancient source of food and medicines, is rich in valuable nutritional and secondary compounds with antioxidant, antimicrobial, and anticancer effects. The present study is the first attempt to examine hairy root (HR) induction of F. carica (Sabz and Siah) by inoculating the 3-week-old shoots and leaves with different strains of Agrobacterium rhizogenes and also to investigate methyl jasmonate (MeJA) elicitation of HRs to produce a fast and high-yield production method for secondary metabolites. RESULTS: The maximum transformation rate (100%) was achieved by inoculating the shoots with Agrobacterium rhizogenes strain A7. Siah HRs elicited with 100 and 200 µmol L-1 MeJA and Sabz HRs with 100 µmol L-1 MeJA showed the highest total phenolic content. The highest flavonoid content was 3.935 mg QE g-1 DW in Siah HRs treated with 200 µmol L-1 MeJA and 2.762 mg QE g-1 DW in Sabz HRs treated with 300 µmol L-1 MeJA. The 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity and ferric reducing antioxidant power (FRAP) value of HRs were affected by MeJA treatments. Methyl jasmonate elicitation also significantly enhanced the content of six phenolic acids (gallic acid, caffeic acid, chlorogenic acid, coumaric acid, rosmarinic acid, and cinnamic acid) and three flavonoids (rutin, quercetin, and apigenin). Thymol, a monoterpene phenol, was the main HR compound detected in gas chromatography mass spectrometry (GC-MS) analysis of the essential oils. CONCLUSION: Induction of HRs and elicitation of F. carica HRs by MeJA resulted in a significant increase in the production of important phenolic compounds and a significant increase in antioxidant capacity. © 2020 Society of Chemical Industry.
Asunto(s)
Agrobacterium/metabolismo , Ficus/microbiología , Microbiología de Alimentos , Acetatos/análisis , Antioxidantes/análisis , Apigenina/análisis , Cromatografía Líquida de Alta Presión , Cinamatos/análisis , Ciclopentanos/análisis , Flavonoides/análisis , Ácido Gálico/análisis , Cromatografía de Gases y Espectrometría de Masas , Hidroxibenzoatos/análisis , Oxilipinas/análisis , Fenoles/análisis , Hojas de la Planta/química , Quercetina/análisis , Rutina/análisisRESUMEN
Ficus carica L. is an important source of phenolic and flavonoid compounds with valuable pharmaceutical application across various diseases. The current study was carried out to investigate the influence of Piriformospora indica elicitation on growth, production of phenolic compounds, antioxidant capacity, and expression level of flavonoid biosynthetic pathway genes in hairy root (HR) cultures of F. carica. The maximum improvement in accumulation of phenolic compounds was observed when HR culture of Ficus carica L. was exposed to 2% culture filtrate of P. indica for 72 h: gallic acid (80.5- fold), caffeic acid (26.2-fold), coumaric acid (4.5-fold), and cinnamic acid (60.1-fold), apigenin (27.6-fold) and rutin (5.7-fold). While the highest levels of chlorogenic acid (4.9-fold) and quercetin flavonoid (8.8-fold) were obtained after 48 h elicitation with culture filtrate and cell extract of P. indica at 6% (v/v), respectively. The analysis of biosynthetic genes revealed that the exposure to fungal elicitors resulted in up-regulation of phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), UDP-glucose flavonoid 3-O-glucosyltransferase (UFGT) and MYB3 transcription factor. This study shows the potential of P. indica as an efficacious elicitor for enhancing the secondary metabolites production by F. carica HRs.
Asunto(s)
Ficus , Fenoles , Antioxidantes , Basidiomycota , FlavonoidesRESUMEN
Water scarcity is one of the major factors limiting apple production. Partial root-zone drying (PRD) is a water-saving irrigation technique necessary to improve the efficiency of irrigation techniques to optimize the amount of fruit produced with the volume of water used. The apple trees cv. Red Delicious were exposed to four treatments, including (1) control with 100% of the crop evapotranspiration (ETc) needs; (2) alternate partial root-zone drying with 75% of the ETc needs (APRD75); (3) fixed partial root-zone drying with 75% of the ETc needs (FPRD75); (4) fixed partial root-zone irrigation with 50% of the ETc needs (FPRD50) in a semiarid region of Iran. Results showed that leaf water potential (Ψ leaf), and chlorophyll were significantly decreased in FPRD50 compared to control and other PRD treatments. APRD75 and FPRD75 treatments significantly enhanced (+) -catechin (+C), epicatechin (EC), chlorogenic acid (CGA), caffeic acid (CA) as well as increased water use efficiency (WUE) (by 30-40% compared to control) without significant reduction of yield. PRD reduced gibberellic acid (GA3) and kinetin, while, increased the abscisic acid (ABA) and salicylic acid (SA) levels. The abiotic stress-responsive transcription factors (TFs) MdoMYB121, MdoMYB155, MdbZIP2, and MdbZIP48 were highly expressed in all PRD treatments. Our results demonstrated that APRD75 and FPRD75 have the potential to stimulate antioxidant defense mechanisms, hormonal signaling pathways, and expression of drought-tolerance TFs to improve WUE while maintaining crop yield. Therefore, APRD75andFPRD75 with water savings as compared to full irrigation might be a suitable strategy for irrigation apple trees under water scarcity.
Asunto(s)
Malus , Raíces de Plantas , Agua , Irán , Malus/química , Malus/genética , Raíces de Plantas/metabolismo , Suelo/químicaRESUMEN
AIM: Two bacterial strains of Agrobacterium rhizogenes, A13 and 9534 were evaluated for induction of transformed hairy roots in Linum mucronatum ssp. mucronatum, a high value medicinal plant. MATERIALS AND METHODS: The hairy roots were successfully initiated, through infecting the hypocotyl and root explants and the A13 strain performed a high transformation frequency for hairy roots induction. Transgenic status of hairy roots was confirmed by polymerase chain reaction (PCR) analysis of the rol genes. Growth kinetics of transgenic roots induced by two strains indicated a similar pattern of growth, with maximum growth occurring between 42 to 56 days. The lignan contents in hairy roots were analyzed using high-performance liquid chromatography (HPLC) method. RESULTS: Transformed cultures showed significant differences (P < 0.05) in lignan content. The highest amount of Podophyllotoxin (PTOX, 5.78 mg/g DW) and 6-methoxy podophyllotoxin (MPTOX, 49.19 mg/g DW) was found in transformed lines induced by strain A13, which was four times higher than those of non-transformed roots. The results showed that hairy root cultures of L. mucronatum are rich sources of MPTOX. CONCLUSION: hairy root cultures from L. mucronatum can be used as a useful system for scale-up producing MPTOX and precursors for the production of antitumor agents in substitution with PTOX by considering the appropriate optimizations in future studies.