Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Neurosci ; : 1-10, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38723617

RESUMEN

BACKGROUND: Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). After gene transfer in mice, exogenous MeCP2 expression must be regulated to avoid dose-dependent toxicity. SUMMARY: The preclinical gene therapy literature for treating RTT illustrates a duly diligent progression that begins with proof-of-concept studies and advances toward the development of safer, regulated MECP2 viral genome designs. This design progression was partly achieved through international collaborative studies. In 2023, clinicians administered investigational gene therapies for RTT to patients a decade after the first preclinical gene therapy publications for RTT (clinical trial numbers NCT05606614 and NCT05898620). As clinicians take on a more prominent role in MECP2 gene therapy research, preclinical researchers may continue to test more nuanced hypotheses regarding the safety, efficacy, and mechanism of MECP2 gene transfer. KEY MESSAGE: This review summarizes the history of preclinical MECP2 gene transfer for treating RTT and acknowledges major contributions among colleagues in the field. The first clinical injections are a shared milestone.

2.
Genes (Basel) ; 15(1)2023 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-38254921

RESUMEN

Inactivating mutations and the duplication of methyl-CpG binding protein 2 (MeCP2), respectively, mediate Rett syndrome (RTT) and MECP2 duplication syndrome. These disorders underscore the conceptual dose-dependent risk posed by MECP2 gene therapy for mosaic RTT patients. Recently, a miRNA-Responsive Autoregulatory Element (miRARE) mitigated the dose-dependent toxicity posed by self-complementary adeno-associated viral vector serotype 9 (AAV9) miniMECP2 gene therapy (scAAV9/miniMECP2-myc) in mice. Here, we report an efficacy assessment for the human-ready version of this regulated gene therapy (TSHA-102) in male Mecp2-/y knockout (KO) mice after intracerebroventricular (ICV) administration at postnatal day 2 (P2) and after intrathecal (IT) administration at P7, P14 (±immunosuppression), and P28 (±immunosuppression). We also report qPCR studies on KO mice treated at P7-P35; protein analyses in KO mice treated at P38; and a survival safety study in female adult Mecp2-/+ mice. In KO mice, TSHA-102 improved respiration, weight, and survival across multiple doses and treatment ages. TSHA-102 significantly improved the front average stance and swing times relative to the front average stride time after P14 administration of the highest dose for that treatment age. Viral genomic DNA and miniMECP2 mRNA were present in the CNS. MiniMeCP2 protein expression was higher in the KO spinal cord compared to the brain. In female mice, TSHA-102 permitted survivals that were similar to those of vehicle-treated controls. In all, these pivotal data helped to support the regulatory approval to initiate a clinical trial for TSHA-102 in RTT patients (clinical trial identifier number NCT05606614).


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , MicroARNs , Síndrome de Rett , Adulto , Humanos , Femenino , Masculino , Animales , Ratones , Síndrome de Rett/genética , Síndrome de Rett/terapia , Encéfalo , ADN Viral , Terapia Genética , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA