Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Adv Exp Med Biol ; 1276: 37-52, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32705593

RESUMEN

Microsomal triglyceride transfer protein (MTP) was first identified as an endoplasmic reticulum (ER) resident protein that helps in the transfer of neutral lipids to nascent apolipoprotein B (apoB). Its critical role in the assembly and secretion of apoB-containing lipoproteins was identified in abetalipoproteinemia patients who have mutations in MTP and completely lack apoB-containing lipoproteins in the circulation. It has been established now that MTP not only is involved in the transfer of neutral lipids but also plays a role in cholesterol ester and cluster of differentiation 1d (CD1d) biosynthesis. Besides neutral lipids, MTP may also help in the transfer of sphingolipids such as ceramides and sphingomyelin to the apoB-containing lipoproteins. MTP is a multifunctional protein, and its deregulation during pathophysiological conditions gives rise to different metabolic conditions. This book chapter discusses the physiological role and regulation of MTP to maintain the homeostasis of lipids and lipoproteins. It also reviews the regulation of MTP during certain pathophysiological conditions and provides a brief overview of therapeutic interventions that can be possibly used to target its activity or expression to alleviate some of these metabolic diseases.


Asunto(s)
Proteínas Portadoras , Metabolismo de los Lípidos , Enfermedades Metabólicas , Abetalipoproteinemia , Apolipoproteínas B , Humanos
2.
PLoS One ; 19(1): e0294769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38175855

RESUMEN

Severe Acute Respiratory Syndrome Corona Virus (SARS-CoV-2) is the causative agent of COVID-19 pandemic, which has resulted in global fatalities since late December 2019. Alkaloids play a significant role in drug design for various antiviral diseases, which makes them viable candidates for treating COVID-19. To identify potential antiviral agents, 102 known alkaloids were subjected to docking studies against the two key targets of SARS-CoV-2, namely the spike glycoprotein and main protease. The spike glycoprotein is vital for mediating viral entry into host cells, and main protease plays a crucial role in viral replication; therefore, they serve as compelling targets for therapeutic intervention in combating the disease. From the selection of alkaloids, the top 6 dual inhibitory compounds, namely liensinine, neferine, isoliensinine, fangchinoline, emetine, and acrimarine F, emerged as lead compounds with favorable docked scores. Interestingly, most of them shared the bisbenzylisoquinoline alkaloid framework and belong to Nelumbo nucifera, commonly known as the lotus plant. Docking analysis was conducted by considering the key active site residues of the selected proteins. The stability of the top three ligands with the receptor proteins was further validated through dynamic simulation analysis. The leads underwent ADMET profiling, bioactivity score analysis, and evaluation of drug-likeness and physicochemical properties. Neferine demonstrated a particularly strong affinity for binding, with a docking score of -7.5025 kcal/mol for main protease and -10.0245 kcal/mol for spike glycoprotein, and therefore a strong interaction with both target proteins. Of the lead alkaloids, emetine and fangchinoline demonstrated the lowest toxicity and high LD50 values. These top alkaloids, may support the body's defense and reduce the symptoms by their numerous biological potentials, even though some properties naturally point to their direct antiviral nature. These findings demonstrate the promising anti-COVID-19 properties of the six selected alkaloids, making them potential candidates for drug design. This study will be beneficial in effective drug discovery and design against COVID-19 with negligible side effects.


Asunto(s)
Alcaloides , Antivirales , Inhibidores de Proteasas , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Alcaloides/farmacología , Antivirales/farmacología , COVID-19 , Emetina , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
3.
Diseases ; 6(3)2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30227643

RESUMEN

The rapidly expanding field of bioactive lipids is exemplified by the many sphingolipids, which are structurally and functionally diverse molecules with significant physiologic functions. These sphingolipids are main constituents of cellular membranes and have been found associated with plasma lipoproteins, and their concentrations are altered in several metabolic disorders such as atherosclerosis, obesity, and diabetes. Understanding the mechanisms that regulate their biosynthesis and secretion may provide novel information that might be amenable to therapeutic targeting in the treatment of these diseases. Several sphingolipid synthesis genes have been targeted as potential therapeutics for atherosclerosis. In recent years, significant progress has been made in studying the role of microRNAs (miRNAs) in lipid metabolism. However, little effort has been made to investigate their role in sphingolipid metabolism. Sphingolipid biosynthetic pathways involve various enzymes that lead to the formation of several key molecules implicated in atherosclerosis, and the identification of miRNAs that regulate these enzymes could help us to understand these complex pathways better and may prove beneficial in alleviating atherosclerosis.

4.
Adv Bioinformatics ; 2014: 324753, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25580119

RESUMEN

Impaired insulin signaling has been thought of as important step in both Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). Posttranslational modifications (PTMs) regulate functions and interaction of insulin with insulin receptors substrates (IRSs) and activate insulin signaling downstream pathways via autophosphorylation on several tyrosine (TYR) residues on IRSs. Two important insulin receptor substrates 1 and 2 are widely expressed in human, and alternative phosphorylation on their serine (Ser) and threonine (Thr) residues has been known to block the Tyr phosphorylation of IRSs, thus inhibiting insulin signaling and promoting insulin resistance. Like phosphorylation, O-glycosylation modification is important PTM and inhibits phosphorylation on same or neighboring Ser/Thr residues, often called Yin Yang sites. Both IRS-1 and IRS-2 have been shown to be O-glycosylated; however exact sites are not determined yet. In this study, by using neuronal network based prediction methods, we found more than 50 Ser/Thr residues that have potential to be O-glycosylated and may act as possible sites as well. Moreover, alternative phosphorylation and O-glycosylation on IRS-1 Ser-312, 984, 1037, and 1101 may act as possible therapeutic targets to minimize the risk of AD and T2DM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA