Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Radiology ; 302(3): 676-683, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34931861

RESUMEN

Background Concerns over the neurotoxic potential of retained gadolinium in brain tissues after intravenous gadolinium-based contrast agent (GBCA) administration have led to pronounced worldwide use changes, yet the clinical sequelae of gadolinium retention remain undefined. Purpose To assess clinical and neurologic effects and potential neurotoxicity of gadolinium retention in rats after administration of various GBCAs. Materials and Methods From March 2017 through July 2018, 183 male Wistar rats received 20 intravenous injections of 2.5 mmol per kilogram of body weight (80 human equivalent doses) of various GBCAs (gadodiamide, gadobenate, gadopentetate, gadoxetate, gadobutrol, gadoterate, and gadoteridol) or saline over 4 weeks. Rats were evaluated 6 and 34 weeks after injection with five behavioral tests, and inductively coupled plasma mass spectrometry, transmission electron microscopy, and histopathology were performed on urine, serum, cerebrospinal fluid (CSF), basal ganglia, dentate nucleus, and kidney samples. Dunnett post hoc test and Wilcoxon rank sum test were used to compare differences between treatment groups. Results No evidence of differences in any behavioral test was observed between GBCA-exposed rats and control animals at either 6 or 34 weeks (P = .08 to P = .99). Gadolinium concentrations in both neuroanatomic locations were higher in linear GBCA-exposed rats than macrocyclic GBCA-exposed rats at 6 and 34 weeks (P < .001). Gadolinium clearance over time varied among GBCAs, with gadobutrol having the largest clearance (median: 62% for basal ganglia, 70% for dentate) and gadodiamide having no substantial clearance. At 34 weeks, gadolinium was largely cleared from the CSF and serum of gadodiamide-, gadobenate-, gadoterate-, and gadobutrol-exposed rats, especially for the macrocyclic agents (range: 70%-98% removal for CSF, 34%-94% removal for serum), and was nearly completely removed from urine (range: 96%-99% removal). Transmission electron microscopy was used to detect gadolinium foci in linear GBCA-exposed brain tissue, but no histopathologic differences were observed for any GBCA. Conclusion In this rat model, no clinical evidence of neurotoxicity was observed after exposure to linear and macrocyclic gadolinium-based contrast agents at supradiagnostic doses. © RSNA, 2022 Online supplemental material is available for this article.


Asunto(s)
Encéfalo/efectos de los fármacos , Medios de Contraste/administración & dosificación , Gadolinio/administración & dosificación , Administración Intravenosa , Animales , Encéfalo/metabolismo , Medios de Contraste/metabolismo , Gadolinio/metabolismo , Masculino , Modelos Animales , Ratas , Ratas Wistar
2.
Skeletal Radiol ; 50(7): 1419-1425, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33404669

RESUMEN

OBJECTIVE: To characterize the extent of retention and biodistribution of gadolinium (Gd) following intra-articular (IA) injection of linear and macrocyclic gadolinium-based contrast agents (GBCAs) into the knee joint of a rat model. MATERIALS AND METHODS: Fifteen Wistar rats were divided into five groups and underwent fluoroscopically-guided injections of both knee joints of (1) clinical 1:200 dilution (low dose, LD) gadodiamide (linear GBCA), (2) LD gadobutrol (macrocyclic GBCA), (3) undiluted (high dose, HD) gadodiamide, (4) HD gadobutrol, and (5) saline. Gd concentrations were quantified by inductively coupled plasma mass spectrometry in (1) blood and urine samples obtained over a 72 h period and (2) knee joint tissues, brain, kidney, and bone marrow at 3 days post-injection. RESULTS: Both HD and LD gadodiamide and gadobutrol were rapidly absorbed from the joint with peak serum and urine concentration at 1 h post-injection, with relatively faster clearance of gadobutrol. All GBCA-exposed groups had detectable levels of Gd in the joint tissues, bone marrow, and/or kidneys (median tissue gadolinium range: 0.1-71 µg Gd/g tissue), with higher amounts observed with gadodiamide versus gadobutrol. Retention within brain tissues was only detected following HD gadodiamide administration but not LD gadodiamide nor HD or LD gadobutrol. CONCLUSION: There was rapid systemic absorption, redistribution, and widespread multi-organ retention of Gd following IA injection of both linear and macrocyclic GBCAs, despite substantial amounts of urinary excretion. Higher concentrations of Gd were observed with administration of gadodiamide compared to gadobutrol in most tissues and biofluids.


Asunto(s)
Gadolinio , Compuestos Organometálicos , Animales , Medios de Contraste , Gadolinio DTPA , Imagen por Resonancia Magnética , Ratas , Ratas Wistar , Distribución Tisular
3.
Am J Physiol Endocrinol Metab ; 306(5): E529-42, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24368672

RESUMEN

Insulin deprivation in type 1 diabetes (T1D) individuals increases lipolysis and plasma free fatty acids (FFA) concentration, which can stimulate synthesis of intramyocellular bioactive lipids such as ceramides (Cer) and long-chain fatty acid-CoAs (LCFa-CoAs). Ceramide was shown to decrease muscle insulin sensitivity, and at mitochondrial levels it stimulates reactive oxygen species production. Here, we show that insulin deprivation in streptozotocin diabetic C57BL/6 mice increases quadriceps muscle Cer content, which was correlated with a concomitant decrease in the body fat and increased plasma FFA, glycosylated hemoglobin level (%Hb A1c), and muscular LCFa-CoA content. The alternations were accompanied by an increase in protein expression in LCFa-CoA and Cer synthesis (FATP1/ACSVL5, CerS1, CerS5), a decrease in the expression of genes implicated in muscle insulin sensitivity (GLUT4, GYS1), and inhibition of insulin signaling cascade by Aktα and GYS3ß phosphorylation under acute insulin stimulation. Both the content and composition of sarcoplasmic fraction sphingolipids were most affected by insulin deprivation, whereas mitochondrial fraction sphingolipids remained stable. The observed effects of insulin deprivation were reversed, except for content and composition of LCFa-CoA, CerS protein expression, GYS1 gene expression, and phosphorylation status of Akt and GYS3ß when exogenous insulin was provided by subcutaneous insulin implants. Principal component analysis and Pearson's correlation analysis revealed close relationships between the features of the diabetic phenotype, the content of LCFa-CoAs and Cers containing C18-fatty acids in sarcoplasm, but not in mitochondria. Insulin replacement did not completely rescue the phenotype, especially regarding the content of LCFa-CoA, or proteins implicated in Cer synthesis and muscle insulin sensitivity. These persistent changes might contribute to muscle insulin resistance observed in T1D individuals.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Insulina/metabolismo , Insulina/farmacología , Músculo Esquelético/metabolismo , Esfingolípidos/metabolismo , Animales , Ceramidas/metabolismo , Transportador de Glucosa de Tipo 4/metabolismo , Masculino , Ratones , Músculo Esquelético/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Fracciones Subcelulares/metabolismo
4.
Am J Physiol Endocrinol Metab ; 304(12): E1391-403, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23632634

RESUMEN

Omega-3 polyunsaturated fatty acids (n-3 PUFAs) enhance insulin sensitivity and glucose homeostasis in rodent models of insulin resistance. These beneficial effects have been linked with anti-inflammatory properties, but emerging data suggest that the mechanisms may also converge on mitochondria. We evaluated the influence of dietary n-3 PUFAs on mitochondrial physiology and muscle lipid metabolites in the context of high-fat diet (HFD) in mice. Mice were fed control diets (10% fat), HFD (60% fat), or HFD with fish oil (HFD+FO, 3.4% kcal from n-3 PUFAs) for 10 wk. Body mass and fat mass increased similarly in HFD and HFD+FO, but n-3 PUFAs attenuated the glucose intolerance that developed with HFD and increased expression of genes that regulate glucose metabolism in skeletal muscle. Despite similar muscle triglyceride levels in HFD and HFD+FO, long-chain acyl-CoAs and ceramides were lower in the presence of fish oil. Mitochondrial abundance and oxidative capacity were similarly increased in HFD and HFD+FO compared with controls. Hydrogen peroxide production was similarly elevated in HFD and HFD+FO in isolated mitochondria but not in permeabilized muscle fibers, likely due to increased activity and expression of catalase. These results support a hypothesis that n-3 PUFAs protect glucose tolerance, in part by preventing the accumulation of bioactive lipid mediators that interfere with insulin action. Furthermore, the respiratory function of skeletal muscle mitochondria does not appear to be a major factor in sphingolipid accumulation, glucose intolerance, or the protective effects of n-3 PUFAs.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Aceites de Pescado/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Peso Corporal/fisiología , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Metabolismo Energético/fisiología , Intolerancia a la Glucosa/metabolismo , Metabolismo de los Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Distribución Aleatoria
5.
J Neurol Surg B Skull Base ; 83(2): 203-209, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35433184

RESUMEN

Objective Therapeutic hypothermia is a potentially powerful and controversial clinical tool for neuroprotection following acute neurologic pathology, particularly vascular injury. Indeed, therapeutic hypothermia remains a standard of care for postcardiac arrest ischemia and acute neonatal hypoxic-ischemic encephalopathy, improving both survival and outcomes. Although therapeutic hypothermia remains promising for cellular and systems-based neuronal protection in other neurologic injury states, the systemic side effects have limited clinical utility, confounded analysis of potential neurologic benefits, and precluded the completion of meaningful clinical trials. Methods To address such limitations, we developed and tested a novel, minimally invasive, neurocritical care device that employs continuous circulation of cold saline through the pharyngeal region to deliver focal cerebrovascular cooling. We conducted a preclinical safety and efficacy trial in six adult porcine animals to assess the validity and functionality of the NeuroSave device, and assess cooling potential following middle cerebral artery occlusion ( n = 2). Results NeuroSave consistently lowered brain parenchymal temperature by a median of 9°C relative to core temperature within 60 minutes of initiation, including in ischemic cerebral parenchyma. The core body temperature experienced a maximal reduction of 2°C, or 5% of body temperature, with no associated adverse effects identified. Conclusion The present study uses a large animal preclinical model to demonstrate the safety and efficacy of a novel, noninvasive device for the induction of robust and systemically safe hypothermia within the brain.

6.
Neurointervention ; 16(1): 29-33, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33296954

RESUMEN

PURPOSE: Optical coherence tomography (OCT) has the potential for in vivo clot composition characterization in difficult mechanical embolectomy cases. We performed an in vitro study to determine the OCT characteristics of red blood cells (RBCs) and fibrin rich clots. MATERIALS AND METHODS: Analogues of 5 compositions of clots (5% to 95% RBCs from Group A to E) were created from human blood. The blood mixture was injected into the bifurcation of a 3D printed bifurcated silicone tube. The OPTISTM Integrated System (St. Jude Medical Inc.) was used to identify the magnitude of OCT signals from different compositions of clots. Martius Scarlett Blue trichrome (MSB) staining was performed to confirm the composition of RBCs and fibrin in each clot. RESULTS: Group A and B showed less signal attenuation (less than 30%) from its surface to the inside, which indicated high penetration (low-back scattering). Group C indicated intermediate signal attenuation (60%) from its surface to inside the clots, in which signals were found even at the periphery of the clot. Group D and E were superficially signal rich with more signal attenuation (more than 80%) from its surface to the inside indicating low penetration (high-back scattering). Signal-free shadowing was shown in 3 clots in Group E. MSB staining indicated color change (from red in fibrin-rich clots to yellow in RBC-rich clots). CONCLUSION: Different compositions of clots can be assessed using OCT. Fibrin-rich clots have homogeneous signals with high penetration, while RBC-rich clots can be recognized as superficially signal rich with low penetration.

7.
J Biomed Mater Res B Appl Biomater ; 107(8): 2466-2475, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30775843

RESUMEN

Shape memory polymer (SMP) foam-coated coils (FCCs) are new embolic coils coated with porous SMP designed to expand for increased volume filling and enhanced healing after implantation. The purpose of this study was to compare chronic aneurysm healing after treatment with SMP FCCs to bare platinum coil (BPC) controls in the rabbit elastase aneurysm model. BPCs or SMP FCCs were implanted in rabbit elastase-induced aneurysms for follow-up at 30 days (n = 10), 90 days (n = 5), and 180 days (n = 12 for BPCs; n = 14 for SMP FCCs). Aneurysm occlusion and histologic healing, including a qualitative healing score, neointima thickness, collagen deposition, and inflammation were compared between the two groups. The mean neointima thickness was significantly greater in groups treated with SMP FCCs for all three time points. Histologic healing scores and collagen deposition quantification suggested that aneurysms treated with SMP FCCs experience more complete healing of the dome by 90 days, but the differences were not statistically significant. More progressive occlusion and recanalization were observed in aneurysms treated with SMP FCCs, but neither difference was statistically significant. Additionally, the SMP foam used in the FCCs was found to degrade faster in the rabbit elastase model than expected based on previous studies in a porcine sidewall aneurysm model. This study suggests that SMP FCCs can promote neointima formation along the aneurysm neck, and may lead to more complete healing of the dome and neck. These findings indicate potential benefits of this device for aneurysm occlusion procedures. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B:2466-2475, 2019.


Asunto(s)
Aneurisma , Materiales Biocompatibles Revestidos , Embolización Terapéutica/instrumentación , Elastasa Pancreática/toxicidad , Materiales Inteligentes , Aneurisma/inducido químicamente , Aneurisma/fisiopatología , Aneurisma/terapia , Animales , Conejos
8.
J Gerontol A Biol Sci Med Sci ; 70(11): 1386-93, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25504576

RESUMEN

Acute aerobic exercise increases reactive oxygen species and could potentially damage proteins, but exercise training (ET) enhances mitochondrial respiration irrespective of age. Here, we report a differential impact of ET on protein quality in young and older participants. Using mass spectrometry we measured oxidative damage to skeletal muscle proteins before and after 8 weeks of ET and find that young but not older participants reduced oxidative damage to both total skeletal muscle and mitochondrial proteins. Young participants showed higher total and mitochondrial derived semitryptic peptides and 26S proteasome activity indicating increased protein degradation. ET however, increased the activity of the endogenous antioxidants in older participants. ET also increased skeletal muscle content of the mitochondrial deacetylase SIRT3 in both groups. A reduction in the acetylation of isocitrate dehydrogenase 2 was observed following ET that may counteract the effect of acute oxidative stress. In conclusion aging is associated with an inability to improve skeletal muscle and mitochondrial protein quality in response to ET by increasing degradation of damaged proteins. ET does however increase muscle and mitochondrial antioxidant capacity in older individuals, which provides increased buffering from the acute oxidative effects of exercise.


Asunto(s)
Ejercicio Físico/fisiología , Mitocondrias Musculares/fisiología , Proteínas Mitocondriales/fisiología , Músculo Esquelético/fisiología , Estrés Oxidativo/fisiología , Resistencia Física/fisiología , Acetilación , Adolescente , Adulto , Factores de Edad , Anciano , Femenino , Humanos , Masculino , Proteolisis , Conducta Sedentaria , Adulto Joven
9.
Cell Metab ; 16(6): 777-88, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23217257

RESUMEN

Caloric restriction (CR) mitigates many detrimental effects of aging and prolongs life span. CR has been suggested to increase mitochondrial biogenesis, thereby attenuating age-related declines in mitochondrial function, a concept that is challenged by recent studies. Here we show that lifelong CR in mice prevents age-related loss of mitochondrial oxidative capacity and efficiency, measured in isolated mitochondria and permeabilized muscle fibers. We find that these beneficial effects of CR occur without increasing mitochondrial abundance. Whole-genome expression profiling and large-scale proteomic surveys revealed expression patterns inconsistent with increased mitochondrial biogenesis, which is further supported by lower mitochondrial protein synthesis with CR. We find that CR decreases oxidant emission, increases antioxidant scavenging, and minimizes oxidative damage to DNA and protein. These results demonstrate that CR preserves mitochondrial function by protecting the integrity and function of existing cellular components rather than by increasing mitochondrial biogenesis.


Asunto(s)
Restricción Calórica , Mitocondrias/metabolismo , Recambio Mitocondrial/fisiología , Envejecimiento , Animales , ADN Mitocondrial/metabolismo , Regulación hacia Abajo , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Perfilación de la Expresión Génica , Ratones , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Proteómica , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA