Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 534(7605): 133-7, 2016 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-27251291

RESUMEN

Ribosome biogenesis is a highly complex process in eukaryotes, involving temporally and spatially regulated ribosomal protein (r-protein) binding and ribosomal RNA remodelling events in the nucleolus, nucleoplasm and cytoplasm. Hundreds of assembly factors, organized into sequential functional groups, facilitate and guide the maturation process into productive assembly branches in and across different cellular compartments. However, the precise mechanisms by which these assembly factors function are largely unknown. Here we use cryo-electron microscopy to characterize the structures of yeast nucleoplasmic pre-60S particles affinity-purified using the epitope-tagged assembly factor Nog2. Our data pinpoint the locations and determine the structures of over 20 assembly factors, which are enriched in two areas: an arc region extending from the central protuberance to the polypeptide tunnel exit, and the domain including the internal transcribed spacer 2 (ITS2) that separates 5.8S and 25S ribosomal RNAs. In particular, two regulatory GTPases, Nog2 and Nog1, act as hub proteins to interact with multiple, distant assembly factors and functional ribosomal RNA elements, manifesting their critical roles in structural remodelling checkpoints and nuclear export. Moreover, our snapshots of compositionally and structurally different pre-60S intermediates provide essential mechanistic details for three major remodelling events before nuclear export: rotation of the 5S ribonucleoprotein, construction of the active centre and ITS2 removal. The rich structural information in our structures provides a framework to dissect molecular roles of diverse assembly factors in eukaryotic ribosome assembly.


Asunto(s)
Microscopía por Crioelectrón , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Transporte Activo de Núcleo Celular , Secuencia de Bases , Dominio Catalítico , Núcleo Celular/química , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Citoplasma/metabolismo , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , ADN Espaciador Ribosómico/ultraestructura , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/ultraestructura , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/ultraestructura , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/ultraestructura , Unión Proteica , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Hongos/ultraestructura , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico/ultraestructura , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/aislamiento & purificación , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Rotación , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura
2.
Genes Dev ; 28(2): 198-210, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24449272

RESUMEN

Despite having high-resolution structures for eukaryotic large ribosomal subunits, it remained unclear how these ribonucleoprotein complexes are constructed in living cells. Nevertheless, knowing where ribosomal proteins interact with ribosomal RNA (rRNA) provides a strategic platform to investigate the connection between spatial and temporal aspects of 60S subunit biogenesis. We previously found that the function of individual yeast large subunit ribosomal proteins (RPLs) in precursor rRNA (pre-rRNA) processing correlates with their location in the structure of mature 60S subunits. This observation suggested that there is an order by which 60S subunits are formed. To test this model, we used proteomic approaches to assay changes in the levels of ribosomal proteins and assembly factors in preribosomes when RPLs functioning in early, middle, and late steps of pre-60S assembly are depleted. Our results demonstrate that structural domains of eukaryotic 60S ribosomal subunits are formed in a hierarchical fashion. Assembly begins at the convex solvent side, followed by the polypeptide exit tunnel, the intersubunit side, and finally the central protuberance. This model provides an initial paradigm for the sequential assembly of eukaryotic 60S subunits. Our results reveal striking differences and similarities between assembly of bacterial and eukaryotic large ribosomal subunits, providing insights into how these RNA-protein particles evolved.


Asunto(s)
Modelos Moleculares , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/química , Saccharomyces cerevisiae/química
3.
RNA ; 22(9): 1386-99, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27390266

RESUMEN

Assaying effects on pre-rRNA processing and ribosome assembly upon depleting individual ribosomal proteins (r-proteins) provided an initial paradigm for assembly of eukaryotic ribosomes in vivo-that each structural domain of ribosomal subunits assembles in a hierarchical fashion. However, two features suggest that a more complex pathway may exist: (i) Some r-proteins contain extensions that reach long distances across ribosomes to interact with multiple rRNA domains as well as with other r-proteins. (ii) Individual r-proteins may assemble in a stepwise fashion. For example, the globular domain of an r-protein might assemble separately from its extensions. Thus, these extensions might play roles in assembly that could not be revealed by depleting the entire protein. Here, we show that deleting or mutating extensions of r-proteins L7 (uL30) and L35 (uL29) from yeast reveal important roles in early and middle steps during 60S ribosomal subunit biogenesis. Detailed analysis of the N-terminal terminal extension of L8 (eL8) showed that it is necessary for late nuclear stages of 60S subunit assembly involving two major remodeling events: removal of the ITS2 spacer; and reorganization of the central protuberance (CP) containing 5S rRNA and r-proteins L5 (uL18) and L11 (uL5). Mutations in the L8 extension block processing of 7S pre-rRNA, prevent release of assembly factors Rpf2 and Rrs1 from pre-ribosomes, which is required for rotation of the CP, and block association of Sda1, the Rix1 complex, and the Rea1 ATPase involved in late steps of remodeling.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
RNA ; 22(6): 852-66, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27036125

RESUMEN

In higher eukaryotes, pre-rRNA processing occurs almost exclusively post-transcriptionally. This is not the case in rapidly dividing yeast, as the majority of nascent pre-rRNAs are processed cotranscriptionally, with cleavage at the A2 site first releasing a pre-40S ribosomal subunit followed by release of a pre-60S ribosomal subunit upon transcription termination. Ribosome assembly is driven in part by hierarchical association of assembly factors and r-proteins. Groups of proteins are thought to associate with pre-ribosomes cotranscriptionally during early assembly steps, whereas others associate later, after transcription is completed. Here we describe a previously uncharacterized phenotype observed upon disruption of ribosome assembly, in which normally late-binding proteins associate earlier, with pre-ribosomes containing 35S pre-rRNA. As previously observed by many other groups, we show that disruption of 60S subunit biogenesis results in increased amounts of 35S pre-rRNA, suggesting that a greater fraction of pre-rRNAs are processed post-transcriptionally. Surprisingly, we found that early pre-ribosomes containing 35S pre-rRNA also contain proteins previously thought to only associate with pre-ribosomes after early pre-rRNA processing steps have separated maturation of the two subunits. We believe the shift to post-transcriptional processing is ultimately due to decreased cellular division upon disruption of ribosome assembly. When cells are grown under stress or to high density, a greater fraction of pre-rRNAs are processed post-transcriptionally and follow an alternative processing pathway. Together, these results affirm the principle that ribosome assembly occurs through different, parallel assembly pathways and suggest that there is a kinetic foot-race between the formation of protein binding sites and pre-rRNA processing events.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Ribosomas/metabolismo , Levaduras/metabolismo , Levaduras/genética
5.
Nucleic Acids Res ; 41(3): 1965-83, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23268442

RESUMEN

Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Datos de Secuencia Molecular , Mutación , Precursores del ARN/química , ARN Ribosómico/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
6.
RNA ; 18(10): 1805-22, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22893726

RESUMEN

Ribosome biogenesis is a complex multistep process that involves alternating steps of folding and processing of pre-rRNAs in concert with assembly of ribosomal proteins. Recently, there has been increased interest in the roles of ribosomal proteins in eukaryotic ribosome biogenesis in vivo, focusing primarily on their function in pre-rRNA processing. However, much less is known about participation of ribosomal proteins in the formation and rearrangement of preribosomal particles as they mature to functional subunits. We have studied ribosomal proteins L7 and L8, which are required for the same early steps in pre-rRNA processing during assembly of 60S subunits but are located in different domains within ribosomes. Depletion of either leads to defects in processing of 27SA(3) to 27SB pre-rRNA and turnover of pre-rRNAs destined for large ribosomal subunits. A specific subset of proteins is diminished from these residual assembly intermediates: six assembly factors required for processing of 27SA(3) pre-rRNA and four ribosomal proteins bound to domain I of 25S and 5.8S rRNAs surrounding the polypeptide exit tunnel. In addition, specific sets of ribosomal proteins are affected in each mutant: In the absence of L7, proteins bound to domain II, L6, L14, L20, and L33 are greatly diminished, while proteins L13, L15, and L36 that bind to domain I are affected in the absence of L8. Thus, L7 and L8 might establish RNP structures within assembling ribosomes necessary for the stable association and function of the A(3) assembly factors and for proper assembly of the neighborhoods containing domains I and II.


Asunto(s)
ARN Ribosómico/metabolismo , Proteínas Ribosómicas/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Núcleo Celular/genética , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Análisis por Micromatrices , Organismos Modificados Genéticamente , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Procesamiento Postranscripcional del ARN/fisiología , ARN Ribosómico/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/genética , Levaduras/metabolismo
7.
Nucleic Acids Res ; 40(17): 8646-61, 2012 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-22735702

RESUMEN

To better define the roles of assembly factors required for eukaryotic ribosome biogenesis, we have focused on one specific step in maturation of yeast 60 S ribosomal subunits: processing of 27SB pre-ribosomal RNA. At least 14 assembly factors, the 'B-factor' proteins, are required for this step. These include most of the major functional classes of assembly factors: RNA-binding proteins, scaffolding protein, DEAD-box ATPases and GTPases. We have investigated the mechanisms by which these factors associate with assembling ribosomes. Our data establish a recruitment model in which assembly of the B-factors into nascent ribosomes ultimately leads to the recruitment of the GTPase Nog2. A more detailed analysis suggests that this occurs in a hierarchical manner via two largely independent recruiting pathways that converge on Nog2. Understanding recruitment has allowed us to better determine the order of association of all assembly factors functioning in one step of ribosome assembly. Furthermore, we have identified a novel subcomplex composed of the B-factors Nop2 and Nip7. Finally, we identified a means by which this step in ribosome biogenesis is regulated in concert with cell growth via the TOR protein kinase pathway. Inhibition of TOR kinase decreases association of Rpf2, Spb4, Nog1 and Nog2 with pre-ribosomes.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , GTP Fosfohidrolasas , Metiltransferasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Serina-Treonina Quinasas TOR/metabolismo
8.
Nucleic Acids Res ; 40(10): 4574-88, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22319211

RESUMEN

The yeast protein Ebp2 is required for early steps in production of 60S ribosomal subunits. To search for cofactors with which Ebp2 functions, or substrates on which it acts, we screened for mutants that were synthetically lethal (sl) with the ebp2-14 mutation. Four different mutant alleles of the 60S ribosomal subunit assembly factor Brx1 were found. To investigate defects of the double mutant, we constructed strains conditional for the ebp2-14 brx1- synthetic lethal phenotype. These ebp2-14 brx1 mutants were defective in processing of 27S pre-rRNA and production of 60S subunits, under conditions where each single mutant was not. Ebp2 and Brx1 exhibit a strong two-hybrid interaction, which is eliminated by some combinations of brx1 and ebp2 mutations. In one such mutant, Ebp2 and Brx1 can still associate with pre-ribosomes, but subunit maturation is perturbed. Depletion of either Ebp2 or Brx1 revealed that Brx1 requires Ebp2 for its stable association with pre-ribosomes, but Ebp2 does not depend on the presence of Brx1 to enter pre-ribosomes. These results suggest that assembly of 60S ribosomal subunits requires cooperation of Ebp2 with Brx1, together with other molecules present in pre-ribosomes, potentially including several found in assembly subcomplexes with Brx1 and Ebp2.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Unión al ARN/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Proteínas Portadoras/genética , Datos de Secuencia Molecular , Mutación , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
9.
Mol Cell Biol ; 25(23): 10419-32, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287855

RESUMEN

The essential, conserved yeast nucleolar protein Ytm1 is one of 17 proteins in ribosome assembly intermediates that contain WD40 protein-protein interaction motifs. Such proteins may play key roles in organizing other molecules necessary for ribosome biogenesis. Ytm1 is present in four consecutive 66S preribosomes containing 27SA2, 27SA3, 27SB, and 25.5S plus 7S pre-rRNAs plus ribosome assembly factors and ribosomal proteins. Ytm1 binds directly to Erb1 and is present in a heterotrimeric subcomplex together with Erb1 and Nop7, both within preribosomes and independently of preribosomes. However, Nop7 and Erb1 assemble into preribosomes prior to Ytm1. Mutations in the WD40 motifs of Ytm1 disrupt binding to Erb1, destabilize the heterotrimer, and delay pre-rRNA processing and nuclear export of preribosomes. Nevertheless, 66S preribosomes lacking Ytm1 remain otherwise intact.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Eliminación de Gen , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Datos de Secuencia Molecular , Peso Molecular , Mutación/genética , Proteínas Nucleares/genética , Unión Proteica , Estructura Cuaternaria de Proteína , Precursores del ARN/genética , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Biomed Pharmacother ; 104: 404-410, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29787987

RESUMEN

Due to their trophic and immunoregulatory characteristics mesenchymal stem cells (MSCs) have tremendous potential for use in a variety of clinical applications. Challenges in MSCs' clinical applications include low survival of transplanted cells and low grafting efficiency requiring use of a high number of MSCs to achieve therapeutic benefits. Accordingly, new approaches are urgently needed in order to overcome these limitations. Recent evidence indicates that modulation of autophagy in MSCs prior to their transplantation enhances survival and viability of engrafted MSCs and promotes their pro-angiogenic and immunomodulatory characteristics. Here, we review the current literature describing mechanisms by which modulation of autophagy strengthens pro-angiogenic and immunosuppressive characteristics of MSCs in animal models of multiple sclerosis, osteoporosis, diabetic limb ischemia, myocardial infarction, acute graft-versus-host disease, kidney and liver diseases. Obtained results suggest that modulation of autophagy in MSCs may represent a new therapeutic approach that could enhance efficacy of MSCs in the treatment of ischemic and autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes/terapia , Autofagia/fisiología , Células Madre Mesenquimatosas/fisiología , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos
11.
Health Policy ; 122(5): 519-527, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29422372

RESUMEN

This study aims to present information on the surveillance, policy developments, and implementation of physical activity policies in the 28 European Union (EU) countries. Data was collected on the implementation of the EU Recommendation on health-enhancing physical activity (HEPA) across sectors. In line with the monitoring framework proposed in the Recommendation, a questionnaire was designed to capture information on 23 physical activity indicators. Of the 27 EU countries that responded to the survey, 22 have implemented actions on more than 10 indicators, four countries have implemented more than 20 indicators, and one country has fully addressed and implemented all of the 23 indicators of the monitoring framework. The data collected under this HEPA monitoring framework provided, for the first time, an overview of the implementation of HEPA-related policies and actions at the national level throughout the EU. Areas that need more investment are the "Senior Citizens" sector followed by the "Work Environment", and the "Environment, Urban Planning, and Public Safety" sectors. This information also enabled comparison of the state of play of HEPA policy implementation between EU Member States and facilitated the exchange of good practices.


Asunto(s)
Ejercicio Físico , Implementación de Plan de Salud , Promoción de la Salud/métodos , Formulación de Políticas , Europa (Continente) , Política de Salud , Humanos
12.
Mol Cell Biol ; 34(10): 1863-77, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24636992

RESUMEN

Previous work from our lab suggests that a group of interdependent assembly factors (A(3) factors) is necessary to create early, stable preribosomes. Many of these proteins bind at or near internal transcribed spacer 2 (ITS2), but in their absence, ITS1 is not removed from rRNA, suggesting long-range communication between these two spacers. By comparing the nonessential assembly factors Nop12 and Pwp1, we show that misfolding of rRNA is sufficient to perturb early steps of biogenesis, but it is the lack of A(3) factors that results in turnover of early preribosomes. Deletion of NOP12 significantly inhibits 27SA(3) pre-rRNA processing, even though the A(3) factors are present in preribosomes. Furthermore, pre-rRNAs are stable, indicating that the block in processing is not sufficient to trigger turnover. This is in contrast to the absence of Pwp1, in which the A(3) factors are not present and pre-rRNAs are unstable. In vivo RNA structure probing revealed that the pre-rRNA processing defects are due to misfolding of 5.8S rRNA. In the absence of Nop12 and Pwp1, rRNA helix 5 is not stably formed. Interestingly, the absence of Nop12 results in the formation of an alternative yet unproductive helix 5 when cells are grown at low temperatures.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , ARN Ribosómico 5.8S/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Proteínas Cromosómicas no Histona/genética , Citoplasma/metabolismo , Técnicas de Inactivación de Genes , Datos de Secuencia Molecular , Pliegue del ARN , Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ARN
13.
Mol Biol Cell ; 22(18): 3420-30, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21795388

RESUMEN

The kinesin-related molecular motor Eg5 plays roles in cell division, promoting spindle assembly. We show that during interphase Eg5 is associated with ribosomes and is required for optimal nascent polypeptide synthesis. When Eg5 was inhibited, ribosomes no longer bound to microtubules in vitro, ribosome transit rates slowed, and polysomes accumulated in intact cells, suggesting defects in elongation or termination during polypeptide synthesis. These results demonstrate that the molecular motor Eg5 associates with ribosomes and enhances the efficiency of translation.


Asunto(s)
Cinesinas/metabolismo , Biosíntesis de Proteínas , Animales , Línea Celular , Centrifugación por Gradiente de Densidad , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Interfase , Cinesinas/antagonistas & inhibidores , Cinesinas/genética , Ratones , Microtúbulos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Unión Proteica , Pirimidinas/farmacología , Interferencia de ARN , Ribosomas/metabolismo , Tionas/farmacología
14.
PLoS One ; 4(12): e8249, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20011513

RESUMEN

The structural constituents of the large eukaryotic ribosomal subunit are 3 ribosomal RNAs, namely the 25S, 5.8S and 5S rRNA and about 46 ribosomal proteins (r-proteins). They assemble and mature in a highly dynamic process that involves more than 150 proteins and 70 small RNAs. Ribosome biogenesis starts in the nucleolus, continues in the nucleoplasm and is completed after nucleo-cytoplasmic translocation of the subunits in the cytoplasm. In this work we created 26 yeast strains, each of which conditionally expresses one of the large ribosomal subunit (LSU) proteins. In vivo depletion of the analysed LSU r-proteins was lethal and led to destabilisation and degradation of the LSU and/or its precursors. Detailed steady state and metabolic pulse labelling analyses of rRNA precursors in these mutant strains showed that LSU r-proteins can be grouped according to their requirement for efficient progression of different steps of large ribosomal subunit maturation. Comparative analyses of the observed phenotypes and the nature of r-protein-rRNA interactions as predicted by current atomic LSU structure models led us to discuss working hypotheses on i) how individual r-proteins control the productive processing of the major 5' end of 5.8S rRNA precursors by exonucleases Rat1p and Xrn1p, and ii) the nature of structural characteristics of nascent LSUs that are required for cytoplasmic accumulation of nascent subunits but are nonessential for most of the nuclear LSU pre-rRNA processing events.


Asunto(s)
ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Northern Blotting , Citoplasma/metabolismo , Endonucleasas/metabolismo , Modelos Moleculares , Mutación/genética , Procesamiento de Término de ARN 3' , Precursores del ARN/metabolismo , Transporte de ARN , ARN Ribosómico 5.8S/metabolismo
15.
Mol Biol Cell ; 19(7): 2844-56, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18448671

RESUMEN

In Saccharomyces cerevisiae, more than 180 assembly factors associate with preribosomes to enable folding of pre-rRNA, recruitment of ribosomal proteins, and processing of pre-rRNAs to produce mature ribosomes. To examine the molecular architecture of preribosomes and to connect this structure to functions of each assembly factor, assembly subcomplexes have been purified from preribosomal particles. The Nop7-subcomplex contains three assembly factors: Nop7, Erb1, and Ytm1, each of which is necessary for conversion of 27SA(3) pre-rRNA to 27SB(S) pre-rRNA. However, interactions among these three proteins and mechanisms of their recruitment and function in pre-rRNPs are poorly understood. Here we show that Ytm1, Erb1, and Nop7 assemble into preribosomes in an interdependent manner. We identified which domains within Ytm1, Erb1, and Nop7 are necessary for their interaction with each other and are sufficient for recruitment of each protein into preribosomes. Dominant negative effects on growth and ribosome biogenesis caused by overexpressing truncated Ytm1, Erb1, or Nop7 constructs, and recessive phenotypes of the truncated proteins revealed not only interaction domains but also other domains potentially important for each protein to function in ribosome biogenesis. Our data suggest a model for the architecture of the Nop7-subcomplex and provide potential functions of domains of each protein.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Nucleares/fisiología , Proteínas Ribosómicas/fisiología , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Clonación Molecular , Técnica del Anticuerpo Fluorescente Indirecta , Genes Dominantes , Modelos Biológicos , Conformación Molecular , Mutación , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Temperatura
16.
Mol Cell Biol ; 28(11): 3686-99, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18378690

RESUMEN

Small nucleolar RNAs (snoRNAs) orchestrate the modification and cleavage of pre-rRNA and are essential for ribosome biogenesis. Recent data suggest that after nucleoplasmic synthesis, snoRNAs transiently localize to the Cajal body (in plant and animal cells) or the homologous nucleolar body (in budding yeast) for maturation and assembly into snoRNPs prior to accumulation in their primary functional site, the nucleolus. However, little is known about the trans-acting factors important for the intranuclear trafficking and nucleolar localization of snoRNAs. Here, we describe a large-scale genetic screen to identify proteins important for snoRNA transport in Saccharomyces cerevisiae. We performed fluorescence in situ hybridization analysis to visualize U3 snoRNA localization in a collection of temperature-sensitive yeast mutants. We have identified Nop4, Prp21, Tao3, Sec14, and Htl1 as proteins important for the proper localization of U3 snoRNA. Mutations in genes encoding these proteins lead to specific defects in the targeting or retention of the snoRNA to either the nucleolar body or the nucleolus. Additional characterization of the mutants revealed impairment in specific steps of U3 snoRNA processing, demonstrating that snoRNA maturation and trafficking are linked processes.


Asunto(s)
Genes Fúngicos , ARN de Hongos/metabolismo , ARN Nucleolar Pequeño/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Alelos , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Calor , Mutación , Proteínas Nucleares/análisis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , ARN de Hongos/análisis , ARN Nucleolar Pequeño/análisis , Ribonucleoproteínas Nucleolares Pequeñas/análisis , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética
17.
Genes Dev ; 21(20): 2580-92, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17938242

RESUMEN

More than 170 proteins are necessary for assembly of ribosomes in eukaryotes. However, cofactors that function with each of these proteins, substrates on which they act, and the precise functions of assembly factors--e.g., recruiting other molecules into preribosomes or triggering structural rearrangements of pre-rRNPs--remain mostly unknown. Here we investigated the recruitment of two ribosomal proteins and 5S ribosomal RNA (rRNA) into nascent ribosomes. We identified a ribonucleoprotein neighborhood in preribosomes that contains two yeast ribosome assembly factors, Rpf2 and Rrs1, two ribosomal proteins, rpL5 and rpL11, and 5S rRNA. Interactions between each of these four proteins have been confirmed by binding assays in vitro. These molecules assemble into 90S preribosomal particles containing 35S rRNA precursor (pre-rRNA). Rpf2 and Rrs1 are required for recruiting rpL5, rpL11, and 5S rRNA into preribosomes. In the absence of association of these molecules with pre-rRNPs, processing of 27SB pre-rRNA is blocked. Consequently, the abortive 66S pre-rRNPs are prematurely released from the nucleolus to the nucleoplasm, and cannot be exported to the cytoplasm.


Asunto(s)
Proteínas Nucleares/metabolismo , ARN de Hongos/metabolismo , ARN Ribosómico 5S/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , GTP Fosfohidrolasas , Genes Fúngicos , Sustancias Macromoleculares , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN , ARN de Hongos/química , ARN de Hongos/genética , ARN Ribosómico 5S/química , ARN Ribosómico 5S/genética , Proteínas de Unión al ARN/genética , Proteína Ribosómica L10 , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Ribosomas/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
18.
Nutr Cancer ; 51(2): 162-9, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15860438

RESUMEN

Although many dietary studies have focused on breast cancer risk, few have examined dietary influence on tumor characteristics such as estrogen receptor (ER) status. Because phytoestrogens may modulate hormone levels and ER expression, we analyzed ER status and phytoestrogen intake in a case-case study of 124 premenopausal breast cancer patients. We assessed intake with a food-frequency questionnaire and obtained ER status from medical records. Rather than focusing on risk, we evaluated whether low intakes were more strongly associated with ER-negative tumors than with ER-positive disease. In logistic regression adjusting for potential confounders, threefold greater risks of ER-negative tumors relative to ER-positive tumors were associated with low intake of the isoflavones genistein (odds ratio, OR=3.50; 95% confidence interval, CI=1.43-8.58) and daidzein (OR=3.10; 95% CI=1.31-7.30). Low intake of the flavonoid kaempferol (OR=0.36; 95% CI=0.16-0.83), the trace element boron (OR=0.33; 95% CI=0.13-0.83), and the phytosterol beta-sitosterol (OR=0.42; 95% CI=0.18-0.98) were associated with decreased risk of ER-negative tumors relative to ER-positive disease. Other phytoestrogens were not significantly associated with ER status. Thus, in premenopausal patients, some phytoestrogens may affect breast carcinogenesis by influencing ER status. Such findings suggest new directions for mechanistic research on dietary factors in breast carcinogenesis that may have relevance for prevention and clinical treatment.


Asunto(s)
Neoplasias de la Mama/metabolismo , Dieta , Estado Nutricional/fisiología , Fitoestrógenos/farmacología , Premenopausia/fisiología , Receptores de Estrógenos/efectos de los fármacos , Adulto , Anticarcinógenos/administración & dosificación , Anticarcinógenos/farmacología , Boro/administración & dosificación , Boro/farmacología , Neoplasias de la Mama/dietoterapia , Femenino , Genisteína/farmacología , Humanos , Hipolipemiantes/administración & dosificación , Hipolipemiantes/farmacología , Isoflavonas/administración & dosificación , Isoflavonas/farmacología , Quempferoles/administración & dosificación , Quempferoles/farmacología , Persona de Mediana Edad , Oportunidad Relativa , Fitoestrógenos/administración & dosificación , Receptores de Estrógenos/metabolismo , Factores de Riesgo , Sitoesteroles/administración & dosificación , Sitoesteroles/farmacología , Encuestas y Cuestionarios
19.
RNA ; 8(2): 150-65, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11911362

RESUMEN

To identify new gene products that participate in ribosome biogenesis, we carried out a screen for mutations that result in lethality in combination with mutations in DRS1, a Saccharomyces cerevisiae nucleolar DEAD-box protein required for synthesis of 60S ribosomal subunits. We identified the gene NOP7that encodes an essential protein. The temperature-sensitive nop7-1 mutation or metabolic depletion of Nop7p results in a deficiency of 60S ribosomal subunits and accumulation of halfmer polyribosomes. Analysis of pre-rRNA processing indicates that nop7 mutants exhibit a delay in processing of 27S pre-rRNA to mature 25S rRNA and decreased accumulation of 25S rRNA. Thus Nop7p, like Drs1p, is required for essential steps leading to synthesis of 60S ribosomal subunits. In addition, inactivation or depletion of Nop7p also affects processing at the A0, A1, and A2 sites, which may result from the association of Nop7p with 35S pre-rRNA in 90S pre-rRNPs. Nop7p is localized primarily in the nucleolus, where most steps in ribosome assembly occur. Nop7p is homologous to the zebrafish pescadillo protein necessary for embryonic development. The Nop7 protein contains the BRCT motif, a protein-protein interaction domain through which, for example, the human BRCA1 protein interacts with RNA helicase A.


Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Ribosomas/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Alelos , Secuencia de Aminoácidos , Secuencia de Bases , Nucléolo Celular/fisiología , Clonación Molecular , Cartilla de ADN , Técnica del Anticuerpo Fluorescente Indirecta , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Genotipo , Datos de Secuencia Molecular , Mutagénesis , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribosomas/genética , Ribosomas/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
RNA ; 10(5): 813-27, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15100437

RESUMEN

The Saccharomyces cerevisiae gene RRP1 encodes an essential, evolutionarily conserved protein necessary for biogenesis of 60S ribosomal subunits. Processing of 27S pre-ribosomal RNA to mature 25S rRNA is blocked and 60S subunits are deficient in the temperature-sensitive rrp1-1 mutant. We have used recent advances in proteomic analysis to examine in more detail the function of Rrp1p in ribosome biogenesis. We show that Rrp1p is a nucleolar protein associated with several distinct 66S pre-ribosomal particles. These pre-ribosomes contain ribosomal proteins plus at least 28 nonribosomal proteins necessary for production of 60S ribosomal subunits. Inactivation of Rrp1p inhibits processing of 27SA(3) to 27SB(S) pre-rRNA and of 27SB pre-rRNA to 7S plus 25.5S pre-rRNA. Thus, in the rrp1-1 mutant, 66S pre-ribosomal particles accumulate that contain 27SA(3) and 27SB(L) pre-ribosomal RNAs.


Asunto(s)
Proteínas Nucleares/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas Ribosómicas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA