Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 162(5): 1127-39, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26279190

RESUMEN

The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a 'bridge' of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as "tracks" to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.


Asunto(s)
Vasos Sanguíneos/metabolismo , Macrófagos/metabolismo , Nervios Periféricos/fisiología , Células de Schwann/metabolismo , Animales , Axones/metabolismo , Hipoxia de la Célula , Células Endoteliales/metabolismo , Inflamación/metabolismo , Masculino , Ratones , Neovascularización Fisiológica , Ratas , Ratas Sprague-Dawley , Regeneración , Factor A de Crecimiento Endotelial Vascular/genética
2.
J Cell Sci ; 137(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38488070

RESUMEN

Sphingolipid dysregulation is involved in a range of rare and fatal diseases as well as common pathologies including cancer, infectious diseases or neurodegeneration. Gaining insights into how sphingolipids are involved in these diseases would contribute much to our understanding of human physiology, as well as the pathology mechanisms. However, scientific progress is hampered by a lack of suitable tools that can be used in intact systems. To overcome this, efforts have turned to engineering modified lipids with small clickable tags and to harnessing the power of click chemistry to localize and follow these minimally modified lipid probes in cells. We hope to inspire the readers of this Review to consider applying existing click chemistry tools for their own aspects of sphingolipid research. To this end, we focus here on different biological applications of clickable lipids, mainly to follow metabolic conversions, their visualization by confocal or superresolution microscopy or the identification of their protein interaction partners. Finally, we describe recent approaches employing organelle-targeted and clickable lipid probes to accurately follow intracellular sphingolipid transport with organellar precision.


Asunto(s)
Neoplasias , Esfingolípidos , Humanos , Esfingolípidos/metabolismo , Química Clic , Transporte Biológico
3.
EMBO J ; 36(21): 3156-3174, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28978670

RESUMEN

The network of proteins that orchestrate the distribution of cholesterol among cellular organelles is not fully characterized. We previously proposed that oxysterol-binding protein (OSBP) drives cholesterol/PI4P exchange at contact sites between the endoplasmic reticulum (ER) and the trans-Golgi network (TGN). Using the inhibitor OSW-1, we report here that the sole activity of endogenous OSBP makes a major contribution to cholesterol distribution, lipid order, and PI4P turnover in living cells. Blocking OSBP causes accumulation of sterols at ER/lipid droplets at the expense of TGN, thereby reducing the gradient of lipid order along the secretory pathway. OSBP consumes about half of the total cellular pool of PI4P, a consumption that depends on the amount of cholesterol to be transported. Inhibiting the spatially restricted PI4-kinase PI4KIIIß triggers large periodic traveling waves of PI4P across the TGN These waves are cadenced by long-range PI4P production by PI4KIIα and PI4P consumption by OSBP Collectively, these data indicate a massive spatiotemporal coupling between cholesterol transport and PI4P turnover via OSBP and PI4-kinases to control the lipid composition of subcellular membranes.


Asunto(s)
Colesterol/metabolismo , Células Epiteliales/metabolismo , Antígenos de Histocompatibilidad Menor/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Receptores de Esteroides/metabolismo , Transporte Biológico , Colestenonas/farmacología , Dicarbetoxidihidrocolidina/análogos & derivados , Dicarbetoxidihidrocolidina/química , Retículo Endoplásmico/metabolismo , Células Epiteliales/citología , Colorantes Fluorescentes/química , Expresión Génica , Células HeLa , Humanos , Gotas Lipídicas/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Receptores de Esteroides/antagonistas & inhibidores , Receptores de Esteroides/genética , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/metabolismo , Saponinas/farmacología , Imagen de Lapso de Tiempo , Red trans-Golgi/metabolismo
4.
bioRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790546

RESUMEN

Sphingolipids are important structural components of membranes. Additionally, simple sphingolipids such as sphingosine are highly bioactive and participate in complex subcellular signaling. Sphingolipid deregulation is associated with many severe diseases including diabetes, Parkinson's and cancer. Here, we focus on how sphingosine, generated from sphingolipid catabolism in late endosomes/lysosomes, is reintegrated into the biosynthetic machinery at the endoplasmic reticulum (ER). We characterized the sterol transporter STARD3 as a sphingosine transporter acting at lysosome-ER contact sites. Experiments featuring crosslinkable sphingosine probes, supported by unbiased molecular dynamics simulations, exposed how sphingosine binds to the lipid-binding domain of STARD3. Following the metabolic fate of pre-localized lysosomal sphingosine showed the importance of STARD3 and its actions at contact sites for the integration of sphingosine into ceramide in a cellular context. Our findings provide the first example of interorganellar sphingosine transfer and pave the way for a better understanding of sphingolipid - sterol co-regulation.

5.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(11): 159020, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34352388

RESUMEN

Membrane contact sites (MCS) are regions of close apposition between membrane-bound organelles. Proteins that occupy MCS display various domain organisation. Among them, lipid transfer proteins (LTPs) frequently contain both structured domains as well as regions of intrinsic disorder. In this review, we discuss the various roles of intrinsically disordered protein regions (IDPRs) in LTPs as well as in other proteins that are associated with organelle contact sites. We distinguish the following functions: (i) to act as flexible tethers between two membranes; (ii) to act as entropic barriers to prevent protein crowding and regulate membrane tethering geometry; (iii) to define the action range of catalytic domains. These functions are added to other functions of IDPRs in membrane environments, such as mediating protein-protein and protein-membrane interactions. We suggest that the overall efficiency and fidelity of contact sites might require fine coordination between all these IDPR activities.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Humanos
6.
Dev Cell ; 49(2): 220-234.e8, 2019 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-30905771

RESUMEN

Lipid transfer proteins (LTPs) acting at membrane contact sites (MCS) between the ER and other organelles contain domains involved in heterotypic (e.g., ER to Golgi) membrane tethering as well as domains involved in lipid transfer. Here, we show that a long ≈90 aa intrinsically unfolded sequence at the N terminus of oxysterol-binding protein (OSBP) controls OSBP orientation and dynamics at MCS. This Gly-Pro-Ala-rich sequence, whose hydrodynamic radius is twice as that of folded domains, prevents the two PH domains of the OSBP dimer from homotypically tethering two Golgi-like membranes and considerably facilitates OSBP in-plane diffusion and recycling at MCS. Although quite distant in sequence, the N terminus of OSBP-related protein-4 (ORP4) has similar effects. We propose that N-terminal sequences of low complexity in ORPs form an entropic barrier that restrains protein orientation, limits protein density, and facilitates protein mobility in the narrow and crowded MCS environment.


Asunto(s)
Proteínas Portadoras/metabolismo , Receptores de Esteroides/metabolismo , Proteínas Portadoras/fisiología , Línea Celular , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Lípidos/fisiología , Membranas Mitocondriales/metabolismo , Orgánulos/metabolismo , Dominios Proteicos/fisiología , Receptores de Esteroides/genética , Receptores de Esteroides/fisiología , Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA