Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Chem Biol ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965384

RESUMEN

Targeted protein degradation (TPD) is an emerging therapeutic strategy that would benefit from new chemical entities with which to recruit a wider variety of ubiquitin E3 ligases to target proteins for proteasomal degradation. Here we describe a TPD strategy involving the recruitment of FBXO22 to induce degradation of the histone methyltransferase and oncogene NSD2. UNC8732 facilitates FBXO22-mediated degradation of NSD2 in acute lymphoblastic leukemia cells harboring the NSD2 gain-of-function mutation p.E1099K, resulting in growth suppression, apoptosis and reversal of drug resistance. The primary amine of UNC8732 is metabolized to an aldehyde species, which engages C326 of FBXO22 to recruit the SCFFBXO22 Cullin complex. We further demonstrate that a previously reported alkyl amine-containing degrader targeting XIAP is similarly dependent on SCFFBXO22. Overall, we present a potent NSD2 degrader for the exploration of NSD2 disease phenotypes and a new FBXO22-recruitment strategy for TPD.

2.
Nat Chem Biol ; 19(5): 624-632, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36797403

RESUMEN

The nucleosome acidic patch is a major interaction hub for chromatin, providing a platform for enzymes to dock and orient for nucleosome-targeted activities. To define the molecular basis of acidic patch recognition proteome wide, we performed an amino acid resolution acidic patch interactome screen. We discovered that the histone H3 lysine 36 (H3K36) demethylase KDM2A, but not its closely related paralog, KDM2B, requires the acidic patch for nucleosome binding. Despite fundamental roles in transcriptional repression in health and disease, the molecular mechanisms governing nucleosome substrate specificity of KDM2A/B, or any related JumonjiC (JmjC) domain lysine demethylase, remain unclear. We used a covalent conjugate between H3K36 and a demethylase inhibitor to solve cryogenic electron microscopy structures of KDM2A and KDM2B trapped in action on a nucleosome substrate. Our structures show that KDM2-nucleosome binding is paralog specific and facilitated by dynamic nucleosomal DNA unwrapping and histone charge shielding that mobilize the H3K36 sequence for demethylation.


Asunto(s)
Lisina , Nucleosomas , Histonas/metabolismo , Cromatina , Histona Demetilasas con Dominio de Jumonji/química
3.
Nat Chem Biol ; 18(1): 56-63, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34782742

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) is the primary enzyme responsible for the dimethylation of lysine 36 of histone 3 (H3K36), a mark associated with active gene transcription and intergenic DNA methylation. In addition to a methyltransferase domain, NSD2 harbors two proline-tryptophan-tryptophan-proline (PWWP) domains and five plant homeodomains (PHDs) believed to serve as chromatin reading modules. Here, we report a chemical probe targeting the N-terminal PWWP (PWWP1) domain of NSD2. UNC6934 occupies the canonical H3K36me2-binding pocket of PWWP1, antagonizes PWWP1 interaction with nucleosomal H3K36me2 and selectively engages endogenous NSD2 in cells. UNC6934 induces accumulation of endogenous NSD2 in the nucleolus, phenocopying the localization defects of NSD2 protein isoforms lacking PWWP1 that result from translocations prevalent in multiple myeloma (MM). Mutations of other NSD2 chromatin reader domains also increase NSD2 nucleolar localization and enhance the effect of UNC6934. This chemical probe and the accompanying negative control UNC7145 will be useful tools in defining NSD2 biology.


Asunto(s)
Nucléolo Celular/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Sondas Moleculares/química , Dominios Proteicos , Proteínas Represoras/metabolismo , Metilación , Mieloma Múltiple/metabolismo , Nucleosomas/metabolismo
4.
Cell Mol Life Sci ; 80(6): 149, 2023 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-37183204

RESUMEN

STING acts as a cytosolic nucleotide sensor to trigger host defense upon viral or bacterial infection. While STING hyperactivation can exert anti-tumor effects by increasing T cell filtrates, in other contexts hyperactivation of STING can contribute to autoimmune and neuroinflammatory diseases. Several STING targeting agonists and a smaller subset of antagonists have been developed, yet STING targeted degraders, or PROTACs, remain largely underexplored. Here, we report a series of STING-agonist derived PROTACs that promote STING degradation in renal cell carcinoma (RCC) cells. We show that our STING PROTACs activate STING and target activated/phospho-STING for degradation. Locking STING on the endoplasmic reticulum via site-directed mutagenesis disables STING translocation to the proteasome and resultingly blocks STING degradation. We also demonstrate that PROTAC treatment blocks downstream innate immune signaling events and attenuates the anti-viral response. Interestingly, we find that VHL acts as a bona fide E3 ligase for STING in RCC; thus, VHL-recruiting STING PROTACs further promote VHL-dependent STING degradation. Our study reveals the design and biological assessment of VHL-recruiting agonist-derived STING PROTACs, as well as demonstrates an example of hijacking a physiological E3 ligase to enhance target protein degradation via distinct mechanisms.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Quimera Dirigida a la Proteólisis , Carcinoma de Células Renales/tratamiento farmacológico , Ubiquitina-Proteína Ligasas/metabolismo , Proteolisis , Neoplasias Renales/tratamiento farmacológico , Inmunidad Innata , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
5.
J Am Chem Soc ; 145(14): 8176-8188, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976643

RESUMEN

Nuclear receptor-binding SET domain-containing 2 (NSD2) plays important roles in gene regulation, largely through its ability to dimethylate lysine 36 of histone 3 (H3K36me2). Despite aberrant activity of NSD2 reported in numerous cancers, efforts to selectively inhibit the catalytic activity of this protein with small molecules have been unsuccessful to date. Here, we report the development of UNC8153, a novel NSD2-targeted degrader that potently and selectively reduces the cellular levels of both NSD2 protein and the H3K36me2 chromatin mark. UNC8153 contains a simple warhead that confers proteasome-dependent degradation of NSD2 through a novel mechanism. Importantly, UNC8153-mediated reduction of H3K36me2 through the degradation of NSD2 results in the downregulation of pathological phenotypes in multiple myeloma cells including mild antiproliferative effects in MM1.S cells containing an activating point mutation and antiadhesive effects in KMS11 cells harboring the t(4;14) translocation that upregulates NSD2 expression.


Asunto(s)
Cromatina , Histonas , Histonas/metabolismo , Regulación de la Expresión Génica , Línea Celular Tumoral , Regulación hacia Abajo
6.
PLoS Pathog ; 17(2): e1009346, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33635929

RESUMEN

Transcriptional silencing of HIV in CD4 T cells generates a reservoir of latently infected cells that can reseed infection after interruption of therapy. As such, these cells represent the principal barrier to curing HIV infection, but little is known about their characteristics. To further our understanding of the molecular mechanisms of latency, we characterized a primary cell model of HIV latency in which infected cells adopt heterogeneous transcriptional fates. In this model, we observed that latency is a stable, heritable state that is transmitted through cell division. Using Assay of Transposon-Accessible Chromatin sequencing (ATACseq) we found that latently infected cells exhibit greatly reduced proviral accessibility, indicating the presence of chromatin-based structural barriers to viral gene expression. By quantifying the activity of host cell transcription factors, we observe elevated activity of Forkhead and Kruppel-like factor transcription factors (TFs), and reduced activity of AP-1, RUNX and GATA TFs in latently infected cells. Interestingly, latency reversing agents with different mechanisms of action caused distinct patterns of chromatin reopening across the provirus. We observe that binding sites for the chromatin insulator CTCF are highly enriched in the differentially open chromatin of infected CD4 T cells. Furthermore, depletion of CTCF inhibited HIV latency, identifying this factor as playing a key role in the initiation or enforcement of latency. These data indicate that HIV latency develops preferentially in cells with a distinct pattern of TF activity that promotes a closed proviral structure and inhibits viral gene expression. Furthermore, these findings identify CTCF as a novel regulator of HIV latency.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Cromatina/metabolismo , Epigenómica/métodos , VIH-1/fisiología , Interacciones Huésped-Patógeno , Factores de Transcripción/metabolismo , Latencia del Virus , Sitios de Unión , Linfocitos T CD4-Positivos/virología , Cromatina/genética , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Humanos , Células Jurkat , Factores de Transcripción/genética , Activación Viral
7.
PLoS Pathog ; 14(9): e1007267, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30212584

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of three human malignancies, the endothelial cell cancer Kaposi's sarcoma, and two B cell cancers, Primary Effusion Lymphoma and multicentric Castleman's disease. KSHV has latent and lytic phases of the viral life cycle, and while both contribute to viral pathogenesis, lytic proteins contribute to KSHV-mediated oncogenesis. Reactivation from latency is driven by the KSHV lytic gene transactivator RTA, and RTA transcription is controlled by epigenetic modifications. To identify host chromatin-modifying proteins that are involved in the latent to lytic transition, we screened a panel of inhibitors that target epigenetic regulatory proteins for their ability to stimulate KSHV reactivation. We found several novel regulators of viral reactivation: an inhibitor of Bmi1, PTC-209, two additional histone deacetylase inhibitors, Romidepsin and Panobinostat, and the bromodomain inhibitor (+)-JQ1. All of these compounds stimulate lytic gene expression, viral genome replication, and release of infectious virions. Treatment with Romidepsin, Panobinostat, and PTC-209 induces histone modifications at the RTA promoter, and results in nucleosome depletion at this locus. Finally, silencing Bmi1 induces KSHV reactivation, indicating that Bmi1, a member of the Polycomb repressive complex 1, is critical for maintaining KSHV latency.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Herpesvirus Humano 8/fisiología , Activación Viral/fisiología , Latencia del Virus/fisiología , Línea Celular , Ensamble y Desensamble de Cromatina/efectos de los fármacos , Ensamble y Desensamble de Cromatina/genética , Depsipéptidos/farmacología , Epigénesis Genética/efectos de los fármacos , Genoma Viral/efectos de los fármacos , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/patogenicidad , Compuestos Heterocíclicos con 2 Anillos/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/fisiología , Panobinostat/farmacología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/fisiología , Regiones Promotoras Genéticas , Interferencia de ARN , Tiazoles/farmacología , Transactivadores/genética , Transactivadores/fisiología , Activación Viral/efectos de los fármacos , Activación Viral/genética , Latencia del Virus/genética
8.
Biochemistry ; 57(14): 2140-2149, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29558110

RESUMEN

Multivalent binding is an efficient means to enhance the affinity and specificity of chemical probes targeting multidomain proteins in order to study their function and role in disease. While the theory of multivalent binding is straightforward, physical and structural characterization of bivalent binding encounters multiple technical difficulties. We present a case study where a combination of experimental techniques and computational simulations was used to comprehensively characterize the binding and structure-affinity relationships for a series of Bromosporine-based bivalent bromodomain ligands with a bivalent protein, Transcription Initiation Factor TFIID subunit 1 (TAF1). Experimental techniques-Isothermal Titration Calorimetry, X-ray Crystallography, Circular Dichroism, Size Exclusion Chromatography-Multi-Angle Light Scattering, and Surface Plasmon Resonance-were used to determine structures, binding affinities, and kinetics of monovalent ligands and bivalent ligands with varying linker lengths. The experimental data for monomeric ligands were fed into explicit computational simulations, in which both ligand and protein species were present in a broad range of concentrations, and in up to a 100 s time regime, to match experimental conditions. These simulations provided accurate estimates for apparent affinities (in good agreement with experimental data), individual dissociation microconstants and other microscopic details for each type of protein-ligand complex. We conclude that the expected efficiency of bivalent ligands in a cellular context is difficult to estimate by a single technique in vitro, due to higher order associations favored at the concentrations used, and other complicating processes. Rather, a combination of structural, biophysical, and computational approaches should be utilized to estimate and characterize multivalent interactions.


Asunto(s)
Histona Acetiltransferasas/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Calorimetría , Cristalografía por Rayos X , Dispersión Dinámica de Luz , Histona Acetiltransferasas/metabolismo , Humanos , Sondas Moleculares/metabolismo , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo
9.
Nat Chem Biol ; 12(3): 180-7, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26807715

RESUMEN

We report the design and characterization of UNC3866, a potent antagonist of the methyllysine (Kme) reading function of the Polycomb CBX and CDY families of chromodomains. Polycomb CBX proteins regulate gene expression by targeting Polycomb repressive complex 1 (PRC1) to sites of H3K27me3 via their chromodomains. UNC3866 binds the chromodomains of CBX4 and CBX7 most potently, with a K(d) of ∼100 nM for each, and is 6- to 18-fold selective as compared to seven other CBX and CDY chromodomains while being highly selective over >250 other protein targets. X-ray crystallography revealed that UNC3866's interactions with the CBX chromodomains closely mimic those of the methylated H3 tail. UNC4195, a biotinylated derivative of UNC3866, was used to demonstrate that UNC3866 engages intact PRC1 and that EED incorporation into PRC1 is isoform dependent in PC3 prostate cancer cells. Finally, UNC3866 inhibits PC3 cell proliferation, consistent with the known ability of CBX7 overexpression to confer a growth advantage, whereas UNC4219, a methylated negative control compound, has negligible effects.


Asunto(s)
Oligopéptidos/farmacología , Complejo Represivo Polycomb 1/antagonistas & inhibidores , Complejo Represivo Polycomb 1/genética , Animales , Disponibilidad Biológica , Biotinilación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Regulación de la Expresión Génica/genética , Humanos , Isomerismo , Ligasas , Masculino , Metilación , Ratones , Modelos Moleculares , Complejo Represivo Polycomb 1/biosíntesis , Complejo Represivo Polycomb 1/metabolismo , Proteínas del Grupo Polycomb/genética , Proteínas del Grupo Polycomb/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Bioorg Med Chem Lett ; 26(18): 4436-4440, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27528434

RESUMEN

Epigenetic alterations relate to various human diseases, and developing inhibitors of Kme regulatory proteins is considered to be a new frontier for drug discovery. We were inspired by the known multicyclic ligands, UNC669 and UNC926, which are the first reported small molecule ligands for a methyl-lysine binding domain. We hypothesized that reducing the conformational flexibility of the key amine moiety of UNC669 would result in a unique set of ligands. Twenty-five novel compounds containing a fused bi- or tricyclic amine or a spirocyclic amine were designed and synthesized. To gauge the potential of these amine-containing compounds to interact with Kme regulatory proteins, the compounds were screened against a panel of 24 protein methyltransferases. Compound 13 was discovered as a novel scaffold that interacts with SETD8 and could serve as a starting point for the future development of PKMT inhibitors.


Asunto(s)
Aminas/química , Metiltransferasas/metabolismo , Diseño de Fármacos
12.
Nat Chem Biol ; 9(3): 184-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23292653

RESUMEN

We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is greater than 50-fold more potent toward L3MBTL3 than other members of the MBT family while also demonstrating selectivity against more than 200 other reader domains examined. X-ray crystallography identified a unique 2:2 polyvalent mode of interaction between UNC1215 and L3MBTL3. In cells, UNC1215 is nontoxic and directly binds L3MBTL3 via the Kme-binding pocket of the MBT domains. UNC1215 increases the cellular mobility of GFP-L3MBTL3 fusion proteins, and point mutants that disrupt the Kme-binding function of GFP-L3MBTL3 phenocopy the effects of UNC1215 on localization. Finally, UNC1215 was used to reveal a new Kme-dependent interaction of L3MBTL3 with BCLAF1, a protein implicated in DNA damage repair and apoptosis.


Asunto(s)
Benzamidas/farmacología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Descubrimiento de Drogas , Lisina/análogos & derivados , Sondas Moleculares/farmacología , Piperidinas/farmacología , Benzamidas/química , Benzamidas/metabolismo , Unión Competitiva/efectos de los fármacos , Cristalografía por Rayos X , Proteínas de Unión al ADN/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Lisina/antagonistas & inhibidores , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Estructura Molecular , Piperidinas/química , Piperidinas/metabolismo , Estructura Terciaria de Proteína , Proteínas Represoras/metabolismo , Relación Estructura-Actividad , Proteínas Supresoras de Tumor/metabolismo
13.
Org Biomol Chem ; 13(11): 3220-6, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25437861

RESUMEN

Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 µM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 µM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.


Asunto(s)
Técnicas Químicas Combinatorias , Lisina/química , Agua/química , Metilación , Modelos Moleculares , Estructura Molecular , Electricidad Estática
16.
J Am Chem Soc ; 135(17): 6450-5, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23560599

RESUMEN

Dynamic combinatorial chemistry was utilized to identify a novel small molecule receptor, A2D, for asymmetric dimethyl arginine (aRMe2), which is a post-translational modification (PTM) in proteins. It is known to play a role in a number of diseases, including spinal muscular atrophy, leukemia, lymphoma, and breast cancer. The receptor exhibits 2.5-7.5-fold selectivity over the isomeric symmetric dimethyl arginine, depending on the surrounding sequence, with binding affinities in the low micromolar range. The affinity and selectivity of A2D for the different methylated states of Arg parallels that of proteins that bind to these PTMs. Characterization of the receptor-PTM complex indicates that cation-π interactions provide the main driving force for binding, loosely mimicking the binding mode found in the recognition of dimethyl arginine by native protein receptors.


Asunto(s)
Arginina/análogos & derivados , Receptores de Droga/química , Arginina/química , Arginina/metabolismo , Cromatografía Líquida de Alta Presión , Técnicas Químicas Combinatorias , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Metilación , Modelos Moleculares , Unión Proteica , Procesamiento Proteico-Postraduccional , Bibliotecas de Moléculas Pequeñas
17.
ACS Chem Biol ; 18(8): 1846-1853, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37556795

RESUMEN

Increased expression and hyperactivation of the methyltransferase SET domain bifurcated 1 (SETDB1) are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting that this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's triple tudor domain, (R,R)-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, (R,R)-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with (R,R)-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. (R,R)-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide and that this activity is stimulated by (R,R)-59 primarily through an increase in catalytic activity rather than a change in S-adenosyl methionine binding.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Dominios PR-SET , N-Metiltransferasa de Histona-Lisina/metabolismo , Ligandos , Metilación , Dominio Tudor
18.
bioRxiv ; 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131705

RESUMEN

The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1 - autoinhibited for chromatin binding - that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.

19.
bioRxiv ; 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37214894

RESUMEN

Increased expression and hyperactivation of the methyltransferase SETDB1 are commonly observed in cancer and central nervous system disorders. However, there are currently no reported SETDB1-specific methyltransferase inhibitors in the literature, suggesting this is a challenging target. Here, we disclose that the previously reported small-molecule ligand for SETDB1's Triple Tudor Domain, ( R,R )-59, is unexpectedly able to increase SETDB1 methyltransferase activity both in vitro and in cells. Specifically, ( R,R )-59 promotes in vitro SETDB1-mediated methylation of lysine 64 of the protein kinase Akt1. Treatment with ( R,R )-59 also increased Akt1 threonine 308 phosphorylation and activation, a known consequence of Akt1 methylation, resulting in stimulated cell proliferation in a dose-dependent manner. ( R,R )-59 is the first SETDB1 small-molecule positive activator for the methyltransferase activity of this protein. Mechanism of action studies show that full-length SETDB1 is required for significant in vitro methylation of an Akt1-K64 peptide, and that this activity is stimulated by ( R,R )-59 primarily through an increase in catalytic activity rather than a change in SAM binding.

20.
Nat Commun ; 14(1): 6091, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773238

RESUMEN

The recruitment of 53BP1 to chromatin, mediated by its recognition of histone H4 dimethylated at lysine 20 (H4K20me2), is important for DNA double-strand break repair. Using a series of small molecule antagonists, we demonstrate a conformational equilibrium between an open and a pre-existing lowly populated closed state of 53BP1 in which the H4K20me2 binding surface is buried at the interface between two interacting 53BP1 molecules. In cells, these antagonists inhibit the chromatin recruitment of wild type 53BP1, but do not affect 53BP1 variants unable to access the closed conformation despite preservation of the H4K20me2 binding site. Thus, this inhibition operates by shifting the conformational equilibrium toward the closed state. Our work therefore identifies an auto-associated form of 53BP1-autoinhibited for chromatin binding-that can be stabilized by small molecule ligands encapsulated between two 53BP1 protomers. Such ligands are valuable research tools to study the function of 53BP1 and have the potential to facilitate the development of new drugs for cancer therapy.


Asunto(s)
Cromatina , Histonas , Proteína 1 de Unión al Supresor Tumoral P53 , Roturas del ADN de Doble Cadena , Reparación del ADN , Histonas/metabolismo , Ingeniería de Proteínas , Proteína 1 de Unión al Supresor Tumoral P53/antagonistas & inhibidores , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA