Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 2): 114620, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36273595

RESUMEN

Immensely expanding world population and narrowing arable land for agriculture is a mighty concern faced by the planet at present. One of the major reasons for decline in arable lands is the increased soil salinity, making it unfavourable for crop cultivation. Utilisation of these saline land for agriculture is possible with suitable invention for improving the soil quality. Biofertizers manufactured out of Plant Growth Promoting Rhizobacteria is one such innovation. In the present study, Bacillus licheniformis NJ04 strain was isolated and studied for its halotolerance and other effective plant growth promoting traits. The NJ04 strain was able to tolerate salt up to 10% and highlighted remarkable antifungal activity against common fungal phytopathogens. The preliminary seed germination test in Solanum lycopersicum seeds revealed a significant increase in root length (16.29 ± 0.91 cm) and shoot length (9.66 ± 0.11 cm) of treated plants as compared with the control plants and thereby shows its possible use as a green bioinoculant in agriculture and an ideal candidate to compete with salt stress.


Asunto(s)
Bacillus licheniformis , Solanum lycopersicum , Suelo , Microbiología del Suelo , Desarrollo de la Planta , Raíces de Plantas
2.
Mol Biotechnol ; 66(5): 1031-1050, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38097901

RESUMEN

Diverse practices implementing biopolymer-producing bacteria have been examined in various domains lately. PHAs are among the major biopolymers whose relevance of PHA-producing bacteria in the field of crop improvement is one of the radical unexplored aspects in the field of agriculture. Prolonging shelf life is one serious issue hindering the establishment of biofertilizers. Studies support that PHA can help bacteria survive stressed conditions by providing energy. Therefore, PHA-producing bacteria with Plant Growth-Promoting ability can alter the existing problem of short shelf life in biofertilizers. In the present study, Bacillus subtilis NJ14 was isolated from the soil. It was explored to understand the ability of the strain to produce PHA and augment growth in Solanum lycopersicum and Cicer arietinum. NJ14 strain improved the root and shoot length of both plants significantly. The root and shoot length of S. lycopersicum was increased by 3.49 and 0.41 cm, respectively. Similarly, C. arietinum showed a 9.55 and 8.24 cm increase in root and shoot length, respectively. The strain also exhibited halotolerant activity (up to 10%), metal tolerance to lead (up to 1000 µg/mL) and mercury (up to 100 µg/mL), indicating that the NJ14 strain can be an ideal candidate for a potent biofertilizer.


Asunto(s)
Bacillus subtilis , Cicer , Solanum lycopersicum , Cicer/crecimiento & desarrollo , Cicer/microbiología , Cicer/metabolismo , Bacillus subtilis/metabolismo , Bacillus subtilis/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiología , Estrés Fisiológico , Biopolímeros/metabolismo , Biopolímeros/biosíntesis , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo , Agricultura/métodos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
3.
Antibiotics (Basel) ; 12(3)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36978410

RESUMEN

The Asteraceae family is one of the largest families in the plant kingdom with many of them extensively used for significant traditional and medicinal values. Being a rich source of various phytochemicals, they have found numerous applications in various biological fields and have been extensively used for therapeutic purposes. Owing to its potential phytochemicals present and biological activity, these plants have found their way into pharmaceutical industry as well as in various aspects of nanotechnology such as green synthesis of metal oxide nanoparticles. The nanoparticles developed from the plants of Asteraceae family are highly stable, less expensive, non-toxic, and eco-friendly. Synthesized Asteraceae-mediated nanoparticles have extensive applications in antibacterial, antifungal, antioxidant, anticancer, antidiabetic, and photocatalytic degradation activities. This current review provides an opportunity to understand the recent trend to design and develop strategies for advanced nanoparticles through green synthesis. Here, the review discussed about the plant parts, extraction methods, synthesis, solvents utilized, phytochemicals involved optimization conditions, characterization techniques, and toxicity of nanoparticles using species of Asteraceae and their potential applications for human welfare. Constraints and future prospects for green synthesis of nanoparticles from members of the Asteraceae family are summarized.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA