Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(26): 9407-12, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979769

RESUMEN

Auxin influences nearly every aspect of plant biology through a simple signaling pathway; however, it remains unclear how much of the diversity in auxin effects is explained by variation in the core signaling components and which properties of these components may contribute to diversification in response dynamics. Here, we recapitulated the entire Arabidopsis thaliana forward nuclear auxin signal transduction pathway in Saccharomyces cerevisiae to test whether signaling module composition enables tuning of the dynamic response. Sensitivity analysis guided by a small mathematical model revealed the centrality of auxin/indole-3-acetic acid (Aux/IAA) transcriptional corepressors in controlling response dynamics and highlighted the strong influence of natural variation in Aux/IAA degradation rates on circuit performance. When the basic auxin response circuit was expanded to include multiple Aux/IAAs, we found that dominance relationships between coexpressed Aux/IAAs were sufficient to generate distinct response modules similar to those seen during plant development. Our work provides a new method for dissecting auxin signaling and demonstrates the key role of Aux/IAAs in tuning auxin response dynamics.


Asunto(s)
Arabidopsis/fisiología , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Citometría de Flujo , Vectores Genéticos/genética , Microscopía Fluorescente , Saccharomyces cerevisiae , Biología Sintética
2.
Plant Physiol ; 162(1): 295-303, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23539280

RESUMEN

The phytohormone auxin regulates virtually every aspect of plant development. The hormone directly mediates the interaction between the two members of the auxin coreceptor complex, a TRANSPORT INHIBITOR RESPONSE (TIR1)/AUXIN SIGNALING F-BOX protein and an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) transcriptional repressor. To learn more about the interaction between these proteins, a mutant screen was performed using the yeast (Saccharomyces cerevisiae) two-hybrid system in Arabidopsis (Arabidopsis thaliana). Two tir1 mutations were identified that increased interaction with Aux/IAAs. The D170E and M473L mutations increase affinity between TIR1 and the degron motif of Aux/IAAs and enhance the activity of the SCF(TIR1) complex. This resulted in faster degradation of Aux/IAAs and increased transcription of auxin-responsive genes in the plant. Plants carrying the pTIR1:tir1 D170E/M473L-Myc transgene exhibit diverse developmental defects during plant growth and display an auxin-hypersensitive phenotype. This work demonstrates that changes in the leucine-rich repeat domain of the TIR1 auxin coreceptor can alter the properties of SCF(TIR1).


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/farmacología , Receptores de Superficie Celular/genética , Transducción de Señal , Ácido 2,4-Diclorofenoxiacético/farmacología , Sustitución de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Genes Reporteros , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Receptores de Superficie Celular/metabolismo , Proteínas Recombinantes de Fusión , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/fisiología , Técnicas del Sistema de Dos Híbridos
3.
Plant Physiol ; 160(1): 135-42, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22843664

RESUMEN

Explaining how the small molecule auxin triggers diverse yet specific responses is a long-standing challenge in plant biology. An essential step in auxin response is the degradation of Auxin/Indole-3-Acetic Acid (Aux/IAA, referred to hereafter as IAA) repressor proteins through interaction with auxin receptors. To systematically characterize diversity in degradation behaviors among IAA|receptor pairs, we engineered auxin-induced degradation of plant IAA proteins in yeast (Saccharomyces cerevisiae). We found that IAA degradation dynamics vary widely, depending on which receptor is present, and are not encoded solely by the degron-containing domain II. To facilitate this and future studies, we identified a mathematical model able to quantitatively describe IAA degradation behavior in a single parameter. Together, our results demonstrate the remarkable tunability conferred by specific configurations of the auxin response pathway.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Citometría de Flujo , Semivida , Ácidos Indolacéticos/farmacología , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estructura Terciaria de Proteína , Proteolisis , Receptores de Superficie Celular/genética , Proteínas Represoras/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Factores de Tiempo , Transformación Genética , Ubiquitinación
4.
ACS Synth Biol ; 1(8): 365-74, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-23651290

RESUMEN

Recent advances in the design and construction of synthetic multicelled systems in E. coli and S. cerevisiae suggest that it may be possible to implement sophisticated distributed algorithms with these relatively simple organisms. However, existing design frameworks for synthetic biology do not account for the unique morphologies of growing microcolonies, the interaction of gene circuits with the spatial diffusion of molecular signals, or the relationship between multicelled systems and parallel algorithms. Here, we introduce a framework for the specification and simulation of multicelled behaviors that combines a simple simulation of microcolony growth and molecular signaling with a new specification language called gro. The framework allows the researcher to explore the collective behaviors induced by high level descriptions of individual cell behaviors. We describe example specifications of previously published systems and introduce two novel specifications: microcolony edge detection and programmed microcolony morphogenesis. Finally, we illustrate through example how specifications written in gro can be refined to include increasing levels of detail about their bimolecular implementations.


Asunto(s)
Escherichia coli/crecimiento & desarrollo , Modelos Biológicos , Algoritmos , Simulación por Computador , Escherichia coli/genética , Escherichia coli/metabolismo , Redes Reguladoras de Genes , Transducción de Señal , Programas Informáticos , Biología Sintética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA