Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Acta Oncol ; 62(10): 1338-1347, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37747345

RESUMEN

BACKGROUND: A diagnostic work-up leading to a lung cancer diagnosis is a severely stressful experience that may impact tumor progression. Yet, prospective data are scarce on psychological and biological components of stress at the time of lung cancer diagnosis. The aim of this study was to assess pre-to-post diagnosis change in psychological distress and urinary excretion of catecholamines in patients with suspected lung cancer. METHODS: Participants were 167 patients within the LUCASS study, recruited at referral for suspected lung cancer to University Hospitals in Iceland and Sweden. Patients completed questionnaires on perceived distress (Hospital Anxiety and Depression Scale, HADS) before and after diagnosis of lung cancer or a non-malignant origin. A subpopulation of 85 patients also provided overnight urine for catecholamine analysis before and at a median of 24 days after diagnosis but before treatment. RESULTS: A lung cancer diagnosis was confirmed in 123 (73.7%) patients, with a mean age of 70.1 years. Patients diagnosed with lung cancer experienced a post-diagnosis increase in psychological distress (p = 0.010), while patients with non-malignant lung pathology showed a reduction in distress (p = 0.070). Both urinary epinephrine (p = 0.001) and norepinephrine (p = 0.032) levels were higher before the diagnosis among patients eventually diagnosed with lung cancer compared to those with non-malignant lung pathology. We observed indications of associations between pre-to-post diagnosis changes in perceived distress and changes in urinary catecholamine levels. CONCLUSION: Receiving a lung cancer diagnosis is associated with an increase in psychological distress, while elevated catecholamine levels are evident already before lung cancer diagnosis.


Asunto(s)
Neoplasias Pulmonares , Humanos , Anciano , Neoplasias Pulmonares/diagnóstico , Estudios Prospectivos , Islandia , Suecia , Ansiedad/psicología , Estrés Psicológico/diagnóstico , Norepinefrina , Depresión/psicología , Encuestas y Cuestionarios
2.
Bioinformatics ; 37(22): 4193-4201, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145874

RESUMEN

MOTIVATION: Ion mobility spectrometry (IMS) separations are increasingly used in conjunction with mass spectrometry (MS) for separation and characterization of ionized molecular species. Information obtained from IMS measurements includes the ion's collision cross section (CCS), which reflects its size and structure and constitutes a descriptor for distinguishing similar species in mixtures that cannot be separated using conventional approaches. Incorporating CCS into MS-based workflows can improve the specificity and confidence of molecular identification. At present, there is no automated, open-source pipeline for determining CCS of analyte ions in both targeted and untargeted fashion, and intensive user-assisted processing with vendor software and manual evaluation is often required. RESULTS: We present AutoCCS, an open-source software to rapidly determine CCS values from IMS-MS measurements. We conducted various IMS experiments in different formats to demonstrate the flexibility of AutoCCS for automated CCS calculation: (i) stepped-field methods for drift tube-based IMS (DTIMS), (ii) single-field methods for DTIMS (supporting two calibration methods: a standard and a new enhanced method) and (iii) linear calibration for Bruker timsTOF and non-linear calibration methods for traveling wave based-IMS in Waters Synapt and Structures for Lossless Ion Manipulations. We demonstrated that AutoCCS offers an accurate and reproducible determination of CCS for both standard and unknown analyte ions in various IMS-MS platforms, IMS-field methods, ionization modes and collision gases, without requiring manual processing. AVAILABILITY AND IMPLEMENTATION: https://github.com/PNNL-Comp-Mass-Spec/AutoCCS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Demo datasets are publicly available at MassIVE (Dataset ID: MSV000085979).


Asunto(s)
Espectrometría de Movilidad Iónica , Programas Informáticos , Espectrometría de Masas/métodos , Iones
3.
Proc Natl Acad Sci U S A ; 116(52): 27124-27132, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31806758

RESUMEN

Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots.

4.
Analyst ; 146(19): 5855-5865, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34378550

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) play a crucial role in biological control and pathogenic defense on and within plant tissues, however the mechanisms by which plants associate with PGPR to elicit such beneficial effects need further study. Here, we present time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging of Brachypodium distachyon (Brachypodium) seeds with and without exposure to two model PGPR, i.e., Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.). Delayed image extraction was used to image PGPR-treated seed sections to reveal morphological changes. ToF-SIMS spectral comparison, principal component analysis (PCA), and two-dimensional (2D) imaging show that the selected PGPR have different effects on the host seed surface, resulting in changes in chemical composition and morphology. Metabolite products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and indole-3-acetic acid (IAA), were identified on the PGPR-treated seed surfaces. These compounds have different distributions on the Brachypodium seed surface for the two PGPR, indicating that the different bacteria elicit distinct responses from the host. Our results illustrate that ToF-SIMS is an effective tool to study plant-microbe interactions and to provide insightful information with submicrometer lateral resolution of the chemical distributions associated with morphological features, potentially offering a new way to study the mechanisms underlying beneficial roles of PGPR.


Asunto(s)
Brachypodium , Micrococcaceae , Imagen Molecular , Semillas
5.
Methods ; 184: 29-39, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31655121

RESUMEN

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop noted for its ability to survive water-limiting conditions. Herein, we present an analytical workflow to explore the changes in histone modifications through plant developmental stages and two drought stresses in two sorghum genotypes that differ in their response to drought. Top-down mass spectrometry (MS) is an ideal method to profile histone modifications and distinguish closely related histone proteoforms. We analyzed leaves of 48 plants and identified 26 unique histone proteins and 677 unique histone proteoforms (124 full-length and 553 truncated proteoforms). We detected trimethylation on nearly all H2B N-termini where acetylation is commonly expected. In addition, an unexpected modification on H2A histones was assigned to N-pyruvic acid 2-iminylation based on its unique neutral loss of CO2. Interestingly, some of the truncated histones, in particular H4 and H3.2, showed significant changes that correlated with the growth and water conditions. The histone proteoforms could serve as targets in search of chromatin modifiers and ultimately have important ramifications in future attempts of studying plant epigenetic reprogramming under stress.


Asunto(s)
Aclimatación/genética , Histonas/análisis , Espectrometría de Masas/métodos , Sorghum/fisiología , Cromatografía de Fase Inversa/métodos , Sequías , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Código de Histonas/genética , Histonas/genética , Histonas/metabolismo , Proteínas de Plantas/genética , Procesamiento Proteico-Postraduccional , Ácido Pirúvico/metabolismo
6.
Proc Natl Acad Sci U S A ; 115(18): E4284-E4293, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29666229

RESUMEN

Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes.


Asunto(s)
Bacterias , Microbiota , Raíces de Plantas/microbiología , Sorghum/microbiología , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Deshidratación/metabolismo , Deshidratación/microbiología , Raíces de Plantas/crecimiento & desarrollo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Sorghum/crecimiento & desarrollo
7.
Analyst ; 145(2): 393-401, 2020 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-31789324

RESUMEN

The rhizosphere is arguably the most complex microbial habitat on Earth, comprising an integrated network of plant roots, soil and a highly diverse microbial community (the rhizosphere microbiome). Understanding, predicting and controlling plant-microbe interactions in the rhizosphere will allow us to harness the plant microbiome as a means to increase or restore plant ecosystem productivity, improve plant responses to a wide range of environmental perturbations, and mitigate the effects of climate change by designing ecosystems for long-term soil carbon storage. To this end, it is imperative to develop new molecular approaches with high spatial resolution to capture interactions at the plant-microbe, microbe-microbe, and plant-plant interfaces. In this work, we designed an imaging sample holder that allows integrated surface imaging tools to map the same locations of a plant root-microbe interface with submicron lateral resolutions, providing novel in vivo analysis of root-microbe interactions. Specifically, confocal fluorescence microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) were used for the first time for the correlative imaging of the Brachypodium distachyon root and its interaction with Pseudomonas SW25, a typical plant growth-promoting soil bacterium. Imaging data suggest that the root surface is inhomogeneous and that the interaction between Pseudomonas and Brachypodium roots was confined to only a few spots along the sampled root segments and that the bacterial attachment spots were enriched in Na- and S-related and high-mass organic species. We conclude that the attachment of the Pseudomonas cells to the root surface is outcompeted by strong root-soil mineral interactions but facilitated by the formation of extracellular polymeric substances (EPS).


Asunto(s)
Brachypodium/metabolismo , Compuestos Orgánicos/metabolismo , Raíces de Plantas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas/metabolismo , Brachypodium/microbiología , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Microscopía Fluorescente , Raíces de Plantas/microbiología , Pseudomonas/aislamiento & purificación , Infecciones por Pseudomonas/metabolismo , Microbiología del Suelo
8.
BMC Genomics ; 19(1): 679, 2018 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-30223789

RESUMEN

BACKGROUND: Sorghum bicolor is the fifth most commonly grown cereal worldwide and is remarkable for its drought and abiotic stress tolerance. For these reasons and the large size of biomass varieties, it has been proposed as a bioenergy crop. However, little is known about the genes underlying sorghum's abiotic stress tolerance and biomass yield. RESULTS: To uncover the genetic basis of drought tolerance in sorghum at a genome-wide level, we undertook a high-density phenomics genome wide association study (GWAS) in which 648 diverse sorghum lines were phenotyped at two locations in California once per week by drone over the course of a growing season. Biomass, height, and leaf area were measured by drone for individual field plots, subjected to two drought treatments and a well-watered control. The resulting dataset of ~ 171,000 phenotypic data-points was analyzed along with 183,989 genotype by sequence markers to reveal 213 high-quality, replicated, and conserved GWAS associations. CONCLUSIONS: The genomic intervals defined by the associations include many strong candidate genes, including those encoding heat shock proteins, antifreeze proteins, and other domains recognized as important to plant stress responses. The markers identified by our study can be used for marker assisted selection for drought tolerance and biomass. In addition, our results are a significant step toward identifying specific sorghum genes controlling drought tolerance and biomass yield.


Asunto(s)
Biomasa , Sequías , Genes de Plantas/genética , Estudio de Asociación del Genoma Completo , Sorghum/genética , Estrés Fisiológico/genética , Aclimatación/genética , Variación Biológica Poblacional , California , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Genotipo , Desequilibrio de Ligamiento , Fenotipo , Polimorfismo de Nucleótido Simple
9.
Anal Chem ; 90(10): 6152-6160, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29671593

RESUMEN

van Krevelen diagrams (O/C vs H/C ratios of elemental formulas) have been widely used in studies to obtain an estimation of the main compound categories present in environmental samples. However, the limits defining a specific compound category based solely on O/C and H/C ratios of elemental formulas have never been accurately listed or proposed to classify metabolites in biological samples. Furthermore, while O/C vs H/C ratios of elemental formulas can provide an overview of the compound categories, such classification is inefficient because of the large overlap among different compound categories along both axes. We propose a more accurate compound classification for biological samples analyzed by high-resolution mass spectrometry based on an assessment of the C/H/O/N/P stoichiometric ratios of over 130 000 elemental formulas of compounds classified in 6 main categories: lipids, peptides, amino sugars, carbohydrates, nucleotides, and phytochemical compounds (oxy-aromatic compounds). Our multidimensional stoichiometric compound classification (MSCC) constraints showed a highly accurate categorization of elemental formulas to the main compound categories in biological samples with over 98% of accuracy representing a substantial improvement over any classification based on the classic van Krevelen diagram. This method represents a signficant step forward in environmental research, especially ecological stoichiometry and eco-metabolomics studies, by providing a novel and robust tool to improve our understanding of the ecosystem structure and function through the chemical characterization of biological samples.


Asunto(s)
Amino Azúcares/análisis , Derivados del Benceno/análisis , Carbohidratos/análisis , Lípidos/análisis , Nucleótidos/análisis , Péptidos/análisis , Carbono/química , Hidrógeno/química , Estructura Molecular , Oxígeno/química
10.
J Exp Bot ; 69(16): 3801-3809, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-30032188

RESUMEN

The potential of enhanced photosynthetic efficiency to help achieve the sustainable yield increases required to meet future demands for food and energy has spurred intense research towards understanding, modeling, and engineering photosynthesis. These current efforts, largely focused on the C3 model Arabidopsis thaliana or crop plants (e.g. rice, sorghum, maize, and wheat), could be intensified and broadened using model systems closely related to our food, feed, and energy crops and that allow rapid design-build-test-learn cycles. In this outlooking Opinion, we advocate for a concerted effort to expand our understanding and improve our ability to redesign carbon uptake, allocation, and utilization. We propose two specific research directions that combine enhanced photosynthesis with climate-smart metabolic attributes: (i) engineering pathways for flexible (facultative) C3-C4 metabolism where plants will operate either C3 or C4 photosynthesis based on environmental conditions such as temperature, light, and atmospheric CO2 levels; and (ii) increasing rhizospheric sink strength for carbon utilization, including strategies that allow for augmented transport of carbon to the soil for improved soil properties and carbon storage without jeopardizing aboveground crop biomass. We argue that such ambitious undertakings be first approached and demonstrated by exploring the full genomic potential of two model grasses, the C3Brachypodium distachyon and the C4Setaria viridis. The development of climate-smart crops could provide novel and bold solutions to increase crop productivity while reducing atmospheric carbon and nitrogen emissions.


Asunto(s)
Clima , Productos Agrícolas/fisiología , Fotosíntesis , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Producción de Cultivos , Productos Agrícolas/metabolismo , Nitrógeno/metabolismo
12.
Plant J ; 77(6): 954-61, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24438514

RESUMEN

Antisense oligodeoxynucleotide (asODN) inhibition was developed in the 1970s, and since then has been widely used in animal research. However, in plant biology, the method has had limited application because plant cell walls significantly block efficient uptake of asODN to plant cells. Recently, we have found that asODN uptake is enhanced in a sugar solution. The method has promise for many applications, such as a rapid alternative to time-consuming transgenic studies, and high potential for studying gene functionality in intact plants and multiple plant species, with particular advantages in evaluating the roles of multiple gene family members. Generation of transgenic plants relies on the ability to select transformed cells. This screening process is based on co-introduction of marker genes into the plant cell together with a gene of interest. Currently, the most common marker genes are those that confer antibiotic or herbicide resistance. The possibility that traits introduced by selectable marker genes in transgenic field crops may be transferred horizontally is of major public concern. Marker genes that increase use of antibiotics and herbicides may increase development of antibiotic-resistant bacterial strains or contribute to weed resistance. Here, we describe a method for selection of transformed plant cells based on asODN inhibition. The method enables selective and high-throughput screening for transformed cells without conferring new traits or functions to the transgenic plants. Due to their high binding specificity, asODNs may also find applications as plant-specific DNA herbicides.


Asunto(s)
Ingeniería Genética/métodos , Oligodesoxirribonucleótidos Antisentido/genética , Plantas Modificadas Genéticamente/genética , ARN de Planta/genética , Arabidopsis/genética , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Marcadores Genéticos/genética , Datos de Secuencia Molecular , Mutación , Oligodesoxirribonucleótidos Antisentido/metabolismo , Oryza/genética , Petunia/genética , Fenotipo , Hojas de la Planta/genética , Interferencia de ARN , ARN de Planta/metabolismo , Plantones/genética , Análisis de Secuencia de ADN , Nicotiana/genética , Transformación Genética
13.
Metab Eng ; 29: 76-85, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25769289

RESUMEN

As a means to improve carbon uptake in the cyanobacterium Synechocystis sp. strain PCC6803, we engineered strains to contain additional inducible copies of the endogenous bicarbonate transporter BicA, an essential component of the CO2-concentrating mechanism in cyanobacteria. When cultured under atmospheric CO2 pressure, the strain expressing extra BicA transporters (BicA(+) strain) grew almost twice as fast and accumulated almost twice as much biomass as the control strain. When enriched with 0.5% or 5% CO2, the BicA(+) strain grew slower than the control but still showed a superior biomass production. Introducing a point mutation in the large C-terminal cytosolic domain of the inserted BicA, at a site implicated in allosteric regulation of transport activity, resulted in a strain (BicA(+)(T485G) strain) that exhibited pronounced cell aggregation and failed to grow at 5% CO2. However, the bicarbonate uptake capacity of the induced BicA(+)(T485G) was twice higher than for the wild-type strain. Metabolic analyses, including phenotyping by synchrotron-radiation Fourier transform Infrared spectromicroscopy, scanning electron microscopy, and lectin staining, suggest that the excess assimilated carbon in BicA(+) and BicA(+)(T485G) cells was directed into production of saccharide-rich exopolymeric substances. We propose that the increased capacity for CO2 uptake in the BicA(+) strain can be capitalized on by re-directing carbon flux from exopolymeric substances to other end products such as fuels or high-value chemicals.


Asunto(s)
Proteínas de Transporte de Anión , Proteínas Bacterianas , Biomasa , Dosificación de Gen , Synechocystis , Proteínas de Transporte de Anión/biosíntesis , Proteínas de Transporte de Anión/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Bicarbonatos/metabolismo , Transporte Iónico/genética , Synechocystis/genética , Synechocystis/crecimiento & desarrollo
14.
BMC Plant Biol ; 12: 230, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23217057

RESUMEN

BACKGROUND: Understanding carbon partitioning in cereal seeds is of critical importance to develop cereal crops with enhanced starch yields for food security and for producing specified end-products high in amylose, ß-glucan, or fructan, such as functional foods or oils for biofuel applications. Waxy mutants of cereals have a high content of amylopectin and have been well characterized. However, the allocation of carbon to other components, such as ß-glucan and oils, and the regulation of the altered carbon distribution to amylopectin in a waxy mutant are poorly understood. In this study, we used a rice mutant, GM077, with a low content of amylose to gain molecular insight into how a deficiency of amylose affects carbon allocation to other end products and to amylopectin. We used carbohydrate analysis, subtractive cDNA libraries, and qPCR to identify candidate genes potentially responsible for the changes in carbon allocation in GM077 seeds. RESULTS: Carbohydrate analysis indicated that the content of amylose in GM077 seeds was significantly reduced, while that of amylopectin significantly rose as compared to the wild type BP034. The content of glucose, sucrose, total starch, cell-wall polysaccharides and oil were only slightly affected in the mutant as compared to the wild type. Suppression subtractive hybridization (SSH) experiments generated 116 unigenes in the mutant on the wild-type background. Among the 116 unigenes, three, AGP, ISA1 and SUSIBA2-like, were found to be directly involved in amylopectin synthesis, indicating their possible roles in redirecting carbon flux from amylose to amylopectin. A bioinformatics analysis of the putative SUSIBA2-like binding elements in the promoter regions of the upregulated genes indicated that the SUSIBA2-like transcription factor may be instrumental in promoting the carbon reallocation from amylose to amylopectin. CONCLUSION: Analyses of carbohydrate and oil fractions and gene expression profiling on a global scale in the rice waxy mutant GM077 revealed several candidate genes implicated in the carbon reallocation response to an amylose deficiency, including genes encoding AGPase and SUSIBA2-like. We believe that AGP and SUSIBA2 are two promising targets for classical breeding and/or transgenic plant improvement to control the carbon flux between starch and other components in cereal seeds.


Asunto(s)
Amilosa/deficiencia , Carbono/metabolismo , Perfilación de la Expresión Génica , Oryza/genética , Aceites de Plantas/metabolismo , Proteínas de Plantas/genética , Semillas/genética , Almidón Sintasa/genética , Amilopectina/metabolismo , Amilosa/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Mutación , Hibridación de Ácido Nucleico , Fenotipo , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Biointerphases ; 17(3): 031006, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738921

RESUMEN

The plant growth-promoting rhizobacteria (PGPR) on the host plant surface play a key role in biological control and pathogenic response in plant functions and growth. However, it is difficult to elucidate the PGPR effect on plants. Such information is important in biomass production and conversion. Brachypodium distachyon (Brachypodium), a genomics model for bioenergy and native grasses, was selected as a C3 plant model; and the Gram-negative Pseudomonas fluorescens SBW25 (P.) and Gram-positive Arthrobacter chlorophenolicus A6 (A.) were chosen as representative PGPR strains. The PGPRs were introduced to the Brachypodium seed's awn prior to germination, and their possible effects on the seeding and growth were studied using different modes of time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements, including a high mass-resolution spectral collection and delayed image extraction. We observed key plant metabolic products and biomarkers, such as flavonoids, phenolic compounds, fatty acids, and auxin indole-3-acetic acid in the Brachypodium awns. Furthermore, principal component analysis and two-dimensional imaging analysis reveal that the Brachypodium awns are sensitive to the PGPR, leading to chemical composition and morphology changes on the awn surface. Our results show that ToF-SIMS can be an effective tool to probe cell-to-cell interactions at the biointerface. This work provides a new approach to studying the PGPR effects on awn and shows its potential for the research of plant growth in the future.


Asunto(s)
Brachypodium , Brachypodium/metabolismo , Brachypodium/microbiología
16.
Plant Physiol ; 153(1): 14-33, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20304969

RESUMEN

The caryopses of barley (Hordeum vulgare), as of all cereals, are complex sink organs optimized for starch accumulation and embryo development. While their early to late development has been studied in great detail, processes underlying the caryopses' diurnal adaptation to changes in light, temperature, and the fluctuations in phloem-supplied carbon and nitrogen have remained unknown. In an attempt to identify diurnally affected processes in developing caryopses at the early maturation phase, we monitored global changes of both gene expression and metabolite levels. We applied the 22 K Barley1 GeneChip microarray and identified 2,091 differentially expressed (DE) genes that were assigned to six major diurnal expression clusters. Principal component analysis and other global analyses demonstrated that the variability within the data set relates to genes involved in circadian regulation, storage compound accumulation, embryo development, response to abiotic stress, and photosynthesis. The correlation of amino acid and sugar profiles with expression trajectories led to the identification of several hundred potentially metabolite-regulated DE genes. A comparative analysis of our data set and publicly available microarray data disclosed suborgan-specific expression of almost all diurnal DE genes, with more than 350 genes specifically expressed in the pericarp, endosperm, or embryo tissues. Our data reveal a tight linkage between day/night cycles, changes in light, and the supply of carbon and nitrogen. We present a model that suggests several phases of diurnal gene expression in developing barley caryopses, summarized as starvation and priming, energy collection and carbon fixation, light protection and chaperone activity, storage and growth, and embryo development.


Asunto(s)
Ritmo Circadiano , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Hordeum/metabolismo , Aminoácidos/metabolismo , Metabolismo de los Hidratos de Carbono , Análisis por Conglomerados , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Hordeum/genética , Hordeum/crecimiento & desarrollo , Luz , Análisis de Secuencia por Matrices de Oligonucleótidos , Almidón/metabolismo , Sacarosa/metabolismo
17.
mSystems ; 6(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402348

RESUMEN

Iron (Fe) availability has well-known effects on plant and microbial metabolism, but its effects on interspecies interactions are poorly understood. The purpose of this study was to investigate metabolite exchange between the grass Brachypodium distachyon strain Bd21 and the soil bacterium Pseudomonas fluorescens SBW25::gfp/lux (SBW25) during Fe limitation under axenic conditions. We compared the transcriptional profiles and root exudate metabolites of B. distachyon plants grown semihydroponically with and without SBW25 inoculation and Fe amendment. Liquid chromatography-mass spectrometry analysis of the hydroponic solution revealed an increase in the abundance of the phytosiderophores mugineic acid and deoxymugineic acid under Fe-limited conditions compared to Fe-replete conditions, indicating greater secretion by roots presumably to facilitate Fe uptake. In SBW25-inoculated roots, expression of genes encoding phytosiderophore biosynthesis and uptake proteins increased compared to that in sterile roots, but external phytosiderophore abundances decreased. P. fluorescens siderophores were not detected in treatments without Fe. Rather, expression of SBW25 genes encoding a porin, a transporter, and a monooxygenase was significantly upregulated in response to Fe deprivation. Collectively, these results suggest that SBW25 consumed root-exuded phytosiderophores in response to Fe deficiency, and we propose target genes that may be involved. SBW25 also altered the expression of root genes encoding defense-related enzymes and regulators, including thionin and cyanogenic glycoside production, chitinase, and peroxidase activity, and transcription factors. Our findings provide insights into the molecular bases for the stress response and metabolite exchange of interacting plants and bacteria under Fe-deficient conditions.IMPORTANCE Rhizosphere bacteria influence the growth of their host plant by consuming and producing metabolites, nutrients, and antibiotic compounds within the root system that affect plant metabolism. Under Fe-limited growth conditions, different plant and microbial species have distinct Fe acquisition strategies, often involving the secretion of strong Fe-binding chelators that scavenge Fe and facilitate uptake. Here, we studied interactions between P. fluorescens SBW25, a plant-colonizing bacterium that produces siderophores with antifungal properties, and B. distachyon, a genetic model for cereal grain and biofuel grasses. Under controlled growth conditions, bacterial siderophore production was inhibited in the root system of Fe-deficient plants, bacterial inoculation altered transcription of genes involved in defense and stress response in the roots of B. distachyon, and SBW25 degraded phytosiderophores secreted by the host plant. These findings provide mechanistic insight into interactions that may play a role in rhizosphere dynamics and plant health in soils with low Fe solubility.

18.
Front Plant Sci ; 12: 636709, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149744

RESUMEN

Agricultural cropping systems and pasture comprise one third of the world's arable land and have the potential to draw down a considerable amount of atmospheric CO2 for storage as soil organic carbon (SOC) and improving the soil carbon budget. An improved soil carbon budget serves the dual purpose of promoting soil health, which supports crop productivity, and constituting a pool from which carbon can be converted to recalcitrant forms for long-term storage as a mitigation measure for global warming. In this perspective, we propose the design of crop ideotypes with the dual functionality of being highly productive for the purposes of food, feed, and fuel, while at the same time being able to facilitate higher contribution to soil carbon and improve the below ground ecology. We advocate a holistic approach of the integrated plant-microbe-soil system and suggest that significant improvements in soil carbon storage can be achieved by a three-pronged approach: (1) design plants with an increased root strength to further allocation of carbon belowground; (2) balance the increase in belowground carbon allocation with increased source strength for enhanced photosynthesis and biomass accumulation; and (3) design soil microbial consortia for increased rhizosphere sink strength and plant growth-promoting (PGP) properties.

19.
J Vis Exp ; (169)2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33749685

RESUMEN

Histones belong to a family of highly conserved proteins in eukaryotes. They pack DNA into nucleosomes as functional units of chromatin. Post-translational modifications (PTMs) of histones, which are highly dynamic and can be added or removed by enzymes, play critical roles in regulating gene expression. In plants, epigenetic factors, including histone PTMs, are related to their adaptive responses to the environment. Understanding the molecular mechanisms of epigenetic control can bring unprecedented opportunities for innovative bioengineering solutions. Herein, we describe a protocol to isolate the nuclei and purify histones from sorghum leaf tissue. The extracted histones can be analyzed in their intact forms by top-down mass spectrometry (MS) coupled with online reversed-phase (RP) liquid chromatography (LC). Combinations and stoichiometry of multiple PTMs on the same histone proteoform can be readily identified. In addition, histone tail clipping can be detected using the top-down LC-MS workflow, thus, yielding the global PTM profile of core histones (H4, H2A, H2B, H3). We have applied this protocol previously to profile histone PTMs from sorghum leaf tissue collected from a large-scale field study, aimed at identifying epigenetic markers of drought resistance. The protocol could potentially be adapted and optimized for chromatin immunoprecipitation-sequencing (ChIP-seq), or for studying histone PTMs in similar plants.


Asunto(s)
Biomarcadores/metabolismo , Epigénesis Genética , Histonas/aislamiento & purificación , Espectrometría de Masas , Hojas de la Planta/metabolismo , Proteínas de Plantas/aislamiento & purificación , Sorghum/genética , Sorghum/metabolismo , Secuencia de Aminoácidos , Tampones (Química) , Núcleo Celular/metabolismo , Cromatografía Liquida , Histonas/química , Histonas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Procesamiento Proteico-Postraduccional
20.
PLoS One ; 16(12): e0259937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34879068

RESUMEN

The microbial and molecular characterization of the ectorhizosphere is an important step towards developing a more complete understanding of how the cultivation of biofuel crops can be undertaken in nutrient poor environments. The ectorhizosphere of Setaria is of particular interest because the plant component of this plant-microbe system is an important agricultural grain crop and a model for biofuel grasses. Importantly, Setaria lends itself to high throughput molecular studies. As such, we have identified important intra- and interspecific microbial and molecular differences in the ectorhizospheres of three geographically distant Setaria italica accessions and their wild ancestor S. viridis. All were grown in a nutrient-poor soil with and without nutrient addition. To assess the contrasting impact of nutrient deficiency observed for two S. italica accessions, we quantitatively evaluated differences in soil organic matter, microbial community, and metabolite profiles. Together, these measurements suggest that rhizosphere priming differs with Setaria accession, which comes from alterations in microbial community abundances, specifically Actinobacteria and Proteobacteria populations. When globally comparing the metabolomic response of Setaria to nutrient addition, plants produced distinctly different metabolic profiles in the leaves and roots. With nutrient addition, increases of nitrogen containing metabolites were significantly higher in plant leaves and roots along with significant increases in tyrosine derived alkaloids, serotonin, and synephrine. Glycerol was also found to be significantly increased in the leaves as well as the ectorhizosphere. These differences provide insight into how C4 grasses adapt to changing nutrient availability in soils or with contrasting fertilization schemas. Gained knowledge could then be utilized in plant enhancement and bioengineering efforts to produce plants with superior traits when grown in nutrient poor soils.


Asunto(s)
Bacterias/clasificación , ARN Ribosómico 16S/genética , Setaria (Planta)/clasificación , Setaria (Planta)/crecimiento & desarrollo , Suelo/química , Alcaloides/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , ADN Bacteriano/genética , ADN Ribosómico/genética , Glicerol , Metabolómica , Nitrógeno/metabolismo , Filogenia , Filogeografía , Hojas de la Planta/clasificación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/clasificación , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rizosfera , Análisis de Secuencia de ADN , Setaria (Planta)/metabolismo , Setaria (Planta)/microbiología , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA