Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nature ; 620(7975): 807-812, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37612395

RESUMEN

The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Objetivos , Clima Tropical , Naciones Unidas , Animales , Conservación de los Recursos Naturales/legislación & jurisprudencia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/tendencias , Mamíferos , Agricultura Forestal/legislación & jurisprudencia , Agricultura Forestal/métodos , Agricultura Forestal/tendencias
4.
For Policy Econ ; 131: 102550, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36570104

RESUMEN

For those concerned with the future of forests, the COVID-19 pandemic has simultaneously offered cause for great concern, and renewed hope. On one hand, the pandemic is occurring at a time when forests are already under unprecedented pressures from climate change, amplifying concerns about unsustainable forest extraction in the name of economic recovery. On the other hand, however, the crisis has helped to gather momentum around the notion of a "green recovery," including setting aside additional land for forest conservation. Drawing insights from past and ongoing research in India, we highlight an issue that exemplifies the tension between these two poles: the role of forests as social safety nets for rural communities in developing countries. It is well established that forests can provide critical resources for rural livelihoods, especially in times of crisis, and preliminary reports suggest that these resources have become even more important in the context of India's COVID lockdowns, and mass return migration from urban to rural areas. As the second wave of the pandemic continues to unfold in India, we highlight some key research priorities, including: 1) understanding how and to what extent forest-dependent communities and industries are changing their use of wood- and non-wood resources in the context of return migration and economic stress; 2) tracking shifts in forest cover, structure, and composition that may result from increased extractive pressures; 3) assessing the role of institutions, whether local, national, or international, in mediating these outcomes. Drawing on these observations, we suggest some key principles for integrating forest-based livelihoods into "green recovery," founded on principles that articulate forests as complex and integrated social-ecological systems, prioritize equity, and build on past learnings of community-based forest management.

5.
Glob Chang Biol ; 23(8): 3302-3320, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27935162

RESUMEN

Climate change is expected to alter the distribution of tree species because of critical environmental tolerances related to growth, mortality, reproduction, disturbances, and biotic interactions. How this is realized in 21st century remains uncertain, in large part due to limitations on plant migration and the impacts of landscape fragmentation. Understanding these changes is of particular concern for forest management, which requires information at an appropriately fine spatial resolution. Here we provide a framework and application for tree species vulnerability to climate change in the eastern United States that accounts for influential drivers of future distributions. We used species distribution models to project changes in habitat suitability at 800 m for 40 tree species that vary in physiology, range, and environmental niche. We then developed layers of adaptive capacity based on migration potential, forest fragmentation, and propagule pressure. These were combined into metrics of vulnerability, including an overall index and spatially explicit categories designed to inform management. Despite overall favorable changes in suitability, the majority of species and the landscape were considered vulnerable to climate change. Vulnerability was significantly exacerbated by projections of pests and pathogens for some species. Northern and high-elevation species tended to be the most vulnerable. There were, however, some notable areas of particular resilience, including most of West Virginia. Our approach combines some of the most important considerations for species vulnerability in a straightforward framework, and can be used as a tool for managers to prioritize species, areas, and actions.


Asunto(s)
Cambio Climático , Bosques , Árboles , Ecosistema , Plantas
6.
Ecol Appl ; 27(5): 1578-1593, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28374945

RESUMEN

Understanding the anthropogenic and natural controls that affect the patterns, distribution, and dynamics of terrestrial carbon is crucial to meeting climate change mitigation objectives. We assessed the human and natural controls over aboveground tree biomass density in African dry tropical forests, using Zambia's first nationwide forest inventory. We identified predictors that best explain the variation in biomass density, contrasted anthropogenic and natural sites at different spatial scales, and compared sites with different stand structure characteristics and species composition. In addition, we evaluated the effects of different management and conservation practices on biomass density. Variation in biomass density was mostly determined by biotic processes, linked with both species richness and dominance (evenness), and to a lesser extent, by land use, environmental controls, and spatial structure. Biomass density was negatively associated with tree species evenness and positively associated with species richness for both natural and human-modified sites. Human influence variables (including distance to roads, distance to town, fire occurrence, and the population on site) did not explain substantial variation in biomass density in comparison to biodiversity variables. The relationship of human activities to biomass density in managed sites appears to be mediated by effects on species diversity and stand structure characteristics, with lower values in human-modified sites for all metrics tested. Small contrasts in carbon density between human-modified and natural forest sites signal the potential to maintain carbon in the landscape inside but also outside forestlands in this region. Biodiversity is positively related to biomass density in both human and natural sites, demonstrating potential synergies between biodiversity conservation and climate change mitigation. This is the first evidence of positive outcomes of protected areas and participatory forest management on carbon storage at national scale in Zambia. This research shows that understanding controls over biomass density can provide policy relevant inputs for carbon management and on ecological processes affecting carbon storage.


Asunto(s)
Biomasa , Conservación de los Recursos Naturales/métodos , Bosques , Árboles/fisiología , Biodiversidad , Ambiente , Actividades Humanas , Zambia
7.
Nat Ecol Evol ; 6(12): 1840-1849, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36329351

RESUMEN

Reducing deforestation underpins global biodiversity conservation efforts. However, this focus on retaining forest cover overlooks the multitude of anthropogenic pressures that can degrade forest quality and imperil biodiversity. We use remotely sensed indices of tropical rainforest structural condition and associated human pressures to quantify the relative importance of forest cover, structural condition and integrity (the cumulative effect of condition and pressures) on vertebrate species extinction risk and population trends across the global humid tropics. We found that tropical rainforests of high integrity (structurally intact and under low pressures) were associated with lower likelihood of species being threatened and having declining populations, compared with forest cover alone (without consideration of condition and pressures). Further, species were more likely to be threatened or have declining populations if their geographic ranges contained high proportions of degraded forest than if their ranges contained lower proportions of forest cover but of high quality. Our work suggests that biodiversity conservation policies to preserve forest integrity are now urgently required alongside ongoing efforts to halt deforestation in the hyperdiverse humid tropics.


Asunto(s)
Conservación de los Recursos Naturales , Clima Tropical , Animales , Humanos , Bosques , Biodiversidad , Vertebrados
8.
Nat Ecol Evol ; 4(10): 1377-1384, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778752

RESUMEN

Tropical forests vary in composition, structure and function such that not all forests have similar ecological value. This variability is caused by natural and anthropogenic disturbance regimes, which influence the ability of forests to support biodiversity, store carbon, mediate water yield and facilitate human well-being. While international environmental agreements mandate protecting and restoring forests, only forest extent is typically considered, while forest quality is ignored. Consequently, the locations and loss rates of forests of high ecological value are unknown and coordinated strategies for conserving these forests remain undeveloped. Here, we map locations high in forest structural integrity as a measure of ecological quality on the basis of recently developed fine-resolution maps of three-dimensional forest structure, integrated with human pressure across the global moist tropics. Our analyses reveal that tall forests with closed canopies and low human pressure typical of natural conditions comprise half of the global humid or moist tropical forest estate, largely limited to the Amazon and Congo basins. Most of these forests have no formal protection and, given recent rates of loss, are at substantial risk. With the rapid disappearance of these 'best of the last' forests at stake, we provide a policy-driven framework for their conservation and restoration, and recommend locations to maintain protections, add new protections, mitigate deleterious human impacts and restore forest structure.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Biodiversidad , Humanos , Políticas
9.
Nat Commun ; 11(1): 4621, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963240

RESUMEN

Arctic warming can influence tundra ecosystem function with consequences for climate feedbacks, wildlife and human communities. Yet ecological change across the Arctic tundra biome remains poorly quantified due to field measurement limitations and reliance on coarse-resolution satellite data. Here, we assess decadal changes in Arctic tundra greenness using time series from the 30 m resolution Landsat satellites. From 1985 to 2016 tundra greenness increased (greening) at ~37.3% of sampling sites and decreased (browning) at ~4.7% of sampling sites. Greening occurred most often at warm sampling sites with increased summer air temperature, soil temperature, and soil moisture, while browning occurred most often at cold sampling sites that cooled and dried. Tundra greenness was positively correlated with graminoid, shrub, and ecosystem productivity measured at field sites. Our results support the hypothesis that summer warming stimulated plant productivity across much, but not all, of the Arctic tundra biome during recent decades.


Asunto(s)
Ecosistema , Estaciones del Año , Tundra , Regiones Árticas , Cambio Climático , Monitoreo del Ambiente , Desarrollo de la Planta , Plantas , Suelo , Temperatura
10.
Sci Data ; 6(1): 232, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653863

RESUMEN

Remotely sensed maps of global forest extent are widely used for conservation assessment and planning. Yet, there is increasing recognition that these efforts must now include elements of forest quality for biodiversity and ecosystem services. Such data are not yet available globally. Here we introduce two data products, the Forest Structural Condition Index (SCI) and the Forest Structural Integrity Index (FSII), to meet this need for the humid tropics. The SCI integrates canopy height, tree cover, and time since disturbance to distinguish short, open-canopy, or recently deforested stands from tall, closed-canopy, older stands typical of primary forest. The SCI was validated against estimates of foliage height diversity derived from airborne lidar. The FSII overlays a global index of human pressure on SCI to identify structurally complex forests with low human pressure, likely the most valuable for maintaining biodiversity and ecosystem services. These products represent an important step in maturation from conservation focus on forest extent to forest stands that should be considered "best of the last" in international policy settings.


Asunto(s)
Biodiversidad , Bosques , Clima Tropical , Conservación de los Recursos Naturales , Tecnología de Sensores Remotos
12.
Environ Manage ; 36(6): 808-25, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16215652

RESUMEN

We made use of land cover maps, and land use change associated with urbanization, to provide estimates of the loss of natural resource lands (forest, agriculture, and wetland areas) across the 168,000 km2 Chesapeake Bay watershed. We conducted extensive accuracy assessments of the satellite-derived maps, most of which were produced by us using widely available multitemporal Landsat imagery. The change in urbanization was derived from impervious surface area maps (the built environment) for 1990 and 2000, from which we estimated the loss of resource lands that occurred during this decade. Within the watershed, we observed a 61% increase in developed land (from 5,177 to 8,363 km2). Most of this new development (64%) occurred on agricultural and grasslands, whereas 33% occurred on forested land. Some smaller municipalities lost as much as 17% of their forest lands and 36% of their agricultural lands to development, although in the outlying counties losses ranged from 0% to 1.4% for forests and 0% to 2.6% for agriculture. Fast-growing urban areas surrounded by forested land experienced the most loss of forest to impervious surfaces. These estimates could be used for the monitoring of the impacts of development across the Chesapeake Bay watershed, and the approach has utility for other regions nationwide. In turn, the results and the approach can help jurisdictions set goals for resource land protection and acquisition that are consistent with regional restoration goals.


Asunto(s)
Conservación de los Recursos Naturales , Urbanización , Abastecimiento de Agua , Agricultura , Mid-Atlantic Region , Agua de Mar , Sudeste de Estados Unidos , Árboles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA