Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Mol Cell ; 84(4): 619-620, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38364780

RESUMEN

Leone et al.1 reveal that Pol III transcription complexes recruit a chaperone, HSP70, to execute cotranscriptional cleavage of precursor tRNA. HSP70 binds to the polymerase and translocates to nascent precursor tRNA and then tRNA. The last complex facilitates Pol III to engage in a new, efficient transcription cycle with another HSP70.


Asunto(s)
ARN de Transferencia , Transcripción Genética , ARN de Transferencia/genética , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , ARN Polimerasa III/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(42): e2307185120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37831743

RESUMEN

Precursor tRNAs are transcribed with flanking and intervening sequences known to be processed by specific ribonucleases. Here, we show that transcription complexes of RNA polymerase III assembled on tRNA genes comprise RNase P that cleaves precursor tRNA and subsequently degrades the excised 5' leader. Degradation is based on a 3'-5' exoribonucleolytic activity carried out by the protein subunit Rpp14, as determined by biochemical and reverse genetic analyses. Neither reconstituted nor purified RNase P displays this magnesium ion-dependent, processive exoribonucleolytic activity. Markedly, knockdown of Rpp14 by RNA interference leads to a wide-ranging inhibition of cleavage of flanking and intervening sequences of various precursor tRNAs in extracts and cells. This study reveals that RNase P controls tRNA splicing complex and RNase Z for ordered maturation of nascent precursor tRNAs by transcription complexes.


Asunto(s)
Precursores del ARN , Ribonucleasa P , Humanos , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Precursores del ARN/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasas/metabolismo , Empalme del ARN
3.
RNA ; 29(3): 300-307, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36549864

RESUMEN

The seminal discovery of ribonuclease P (RNase P) and its catalytic RNA by Sidney Altman has not only revolutionized our understanding of life, but also opened new fields for scientific exploration and investigation. This review focuses on human RNase P and its use as a gene-targeting tool, two topics initiated in Altman's laboratory. We outline early works on human RNase P as a tRNA processing enzyme and comment on its expanding nonconventional functions in molecular networks of transcription, chromatin remodeling, homology-directed repair, and innate immunity. The important implications and insights from these discoveries on the potential use of RNase P as a gene-targeting tool are presented. This multifunctionality calls to a modified structure-function partitioning of domains in human RNase P, as well as its relative ribonucleoprotein, RNase MRP. The role of these two catalysts in innate immunity is of particular interest in molecular evolution, as this dynamic molecular network could have originated and evolved from primordial enzymes and sensors of RNA, including predecessors of these two ribonucleoproteins.


Asunto(s)
ARN Catalítico , Ribonucleasa P , Humanos , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , ARN/genética , Procesamiento Postranscripcional del ARN , ARN Catalítico/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(36): 22113-22121, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32843346

RESUMEN

RNA polymerase (Pol) III has a noncanonical role of viral DNA sensing in the innate immune system. This polymerase transcribes viral genomes to produce RNAs that lead to induction of type I interferons (IFNs). However, the genetic and functional links of Pol III to innate immunity in humans remain largely unknown. Here, we describe a rare homozygous mutation (D40H) in the POLR3E gene, coding for a protein subunit of Pol III, in a child with recurrent and systemic viral infections and Langerhans cell histiocytosis. Fibroblasts derived from the patient exhibit impaired induction of type I IFN and increased susceptibility to human cytomegalovirus (HCMV) infection. Cultured cell lines infected with HCMV show induction of POLR3E expression. However, induction is not restricted to DNA virus, as sindbis virus, an RNA virus, enhances the expression of this protein. Likewise, foreign nonviral DNA elevates the steady-state level of POLR3E and elicits promoter-dependent and -independent transcription by Pol III. Remarkably, the molecular mechanism underlying the D40H mutation of POLR3E involves the assembly of defective initiation complexes of Pol III. Our study links mutated POLR3E and Pol III to an innate immune deficiency state in humans.


Asunto(s)
Citomegalovirus/fisiología , Fibroblastos/inmunología , Fibroblastos/virología , ARN Polimerasa III/metabolismo , Animales , Chlorocebus aethiops , Citomegalovirus/inmunología , Células Dendríticas , Regulación Enzimológica de la Expresión Génica , Humanos , Mutación , ARN Polimerasa III/genética , Células Vero
5.
Proc Natl Acad Sci U S A ; 116(28): 14228-14237, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31221751

RESUMEN

Bacterial spores can remain dormant for years but possess the remarkable ability to germinate, within minutes, once nutrients become available. However, it still remains elusive how such instant awakening of cellular machineries is achieved. Utilizing Bacillus subtilis as a model, we show that YwlE arginine (Arg) phosphatase is crucial for spore germination. Accordingly, the absence of the Arg kinase McsB accelerated the process. Arg phosphoproteome of dormant spores uncovered a unique set of Arg-phosphorylated proteins involved in key biological functions, including translation and transcription. Consequently, we demonstrate that during germination, YwlE dephosphorylates an Arg site on the ribosome-associated chaperone Tig, enabling its association with the ribosome to reestablish translation. Moreover, we show that Arg dephosphorylation of the housekeeping σ factor A (SigA), mediated by YwlE, facilitates germination by activating the transcriptional machinery. Subsequently, we reveal that transcription is reinitiated at the onset of germination and its recommencement precedes that of translation. Thus, Arg dephosphorylation elicits the most critical stages of spore molecular resumption, placing this unusual post-translational modification as a major regulator of a developmental process in bacteria.


Asunto(s)
Arginina/metabolismo , Proteínas Bacterianas/genética , Biosíntesis de Proteínas , Proteínas Quinasas/genética , Esporas Bacterianas/genética , Arginina/genética , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/genética , Ribosomas/genética , Factor sigma/genética , Esporas Bacterianas/crecimiento & desarrollo
6.
Trends Genet ; 33(9): 594-603, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28697848

RESUMEN

Recent studies show that nuclear RNase P is linked to chromatin structure and function. Thus, variants of this ribonucleoprotein (RNP) complex bind to chromatin of small noncoding RNA genes; integrate into initiation complexes of RNA polymerase (Pol) III; repress histone H3.3 nucleosome deposition; control tRNA and PIWI-interacting RNA (piRNA) gene clusters for genome defense; and respond to Werner syndrome helicase (WRN)-related replication stress and DNA double-strand breaks (DSBs). Likewise, the related RNase MRP and RMRP-TERT (telomerase reverse transcriptase) are implicated in RNA-dependent RNA polymerization for chromatin silencing, whereas the telomerase carries out RNA-dependent DNA polymerization for telomere lengthening. Remarkably, the four RNPs share several protein subunits, including two Alba-like chromatin proteins that possess DEAD-like and ATPase motifs found in chromatin modifiers and remodelers. Based on available data, RNase P and related RNPs act in transition processes of DNA to RNA and vice versa and connect these processes to genome preservation, including replication, DNA repair, and chromatin remodeling.


Asunto(s)
Ribonucleasa P/metabolismo , Animales , Reparación del ADN , Humanos , ARN/genética , Transcripción Genética
7.
RNA ; 24(1): 1-5, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28971852

RESUMEN

RNase P catalyzes 5'-maturation of tRNAs in all three domains of life. This primary function is accomplished by either a ribozyme-centered ribonucleoprotein (RNP) or a protein-only variant (with one to three polypeptides). The large, multicomponent archaeal and eukaryotic RNase P RNPs appear disproportionate to the simplicity of their role in tRNA 5'-maturation, prompting the question of why the seemingly gratuitously complex RNP forms of RNase P were not replaced with simpler protein counterparts. Here, motivated by growing evidence, we consider the hypothesis that the large RNase P RNP was retained as a direct consequence of multiple roles played by its components in processes that are not related to the canonical RNase P function.


Asunto(s)
Ribonucleasa P/genética , Animales , Proteínas Arqueales/genética , Evolución Molecular , Humanos
8.
Biochim Biophys Acta Rev Cancer ; 1867(1): 42-48, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27902925

RESUMEN

WRN helicase has several roles in genome maintenance, such as replication, base excision repair, recombination, DNA damage response and transcription. These processes are often found upregulated in human cancers, many of which display increased levels of WRN. Therefore, directed inhibition of this RecQ helicase could be beneficial to selective cancer therapy. Inhibition of WRN is feasible by the use of small-molecule inhibitors or application of RNA interference and EGS/RNase P targeting systems. Remarkably, helicase depletion leads to a severe reduction in cell viability due to mitotic catastrophe, which is triggered by replication stress induced by DNA repair failure and fork progression arrest. Moreover, we present new evidence that WRN depletion results in early changes of RNA polymerase III and RNase P activities, thereby implicating chromatin-associated tRNA enzymes in WRN-related stress response. Combined with the recently discovered roles of RecQ helicases in cancer, current data support the targeting prospect of these genome guardians, as a means of developing clinical phases aimed at diminishing adaptive resistance to present targeted therapies.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Replicación del ADN/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Helicasa del Síndrome de Werner/antagonistas & inhibidores , Animales , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , Replicación del ADN/genética , Humanos , RecQ Helicasas/antagonistas & inhibidores
10.
Biochim Biophys Acta ; 1859(4): 572-80, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26808708

RESUMEN

Human WRN, a RecQ helicase encoded by the Werner syndrome gene, is implicated in genome maintenance, including replication, recombination, excision repair and DNA damage response. These genetic processes and expression of WRN are concomitantly upregulated in many types of cancers. Therefore, targeted destruction of this helicase could be useful for elimination of cancer cells. Here, we provide a proof of concept for applying the external guide sequence (EGS) approach in directing an RNase P RNA to efficiently cleave the WRN mRNA in cultured human cell lines, thus abolishing translation and activity of this distinctive 3'-5' DNA helicase-nuclease. Remarkably, EGS-directed knockdown of WRN leads to severe inhibition of cell viability. Hence, further assessment of this targeting system could be beneficial for selective cancer therapies, particularly in the light of the recent improvements introduced into EGSs.


Asunto(s)
Exodesoxirribonucleasas/genética , Biosíntesis de Proteínas , RecQ Helicasas/genética , Ribonucleasa P/genética , Síndrome de Werner/genética , Línea Celular , Daño del ADN , Reparación del ADN/genética , Replicación del ADN/genética , Exodesoxirribonucleasas/antagonistas & inhibidores , Genoma Humano , Inestabilidad Genómica/genética , Humanos , ARN Mensajero/biosíntesis , ARN Mensajero/genética , RecQ Helicasas/antagonistas & inhibidores , Síndrome de Werner/patología , Helicasa del Síndrome de Werner
11.
Nucleic Acids Res ; 43(11): 5442-50, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25953854

RESUMEN

Human RNase P is implicated in transcription of small non-coding RNA genes by RNA polymerase III (Pol III), but the precise role of this ribonucleoprotein therein remains unknown. We here show that targeted destruction of HeLa nuclear RNase P inhibits transcription of 5S rRNA genes in whole cell extracts, if this precedes the stage of initiation complex formation. Biochemical purification analyses further reveal that this ribonucleoprotein is recruited to 5S rRNA genes as a part of proficient initiation complexes and the activity persists at reinitiation. Knockdown of RNase P abolishes the assembly of initiation complexes by preventing the formation of the initiation sub-complex of Pol III. Our results demonstrate that the structural intactness, but not the endoribonucleolytic activity per se, of RNase P is critical for the function of Pol III in cells and in extracts.


Asunto(s)
ARN Polimerasa III/metabolismo , ARN Ribosómico 5S/genética , Ribonucleasa P/metabolismo , Iniciación de la Transcripción Genética , Células HeLa , Humanos , ARN no Traducido/metabolismo , Ribonucleasa P/antagonistas & inhibidores , Ribonucleasa P/aislamiento & purificación
12.
Nucleic Acids Res ; 39(13): 5704-14, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21450806

RESUMEN

Human nuclear RNase P is required for transcription and processing of tRNA. This catalytic RNP has an H1 RNA moiety associated with ten distinct protein subunits. Five (Rpp20, Rpp21, Rpp25, Rpp29 and Pop5) out of eight of these protein subunits, prepared in refolded recombinant forms, bind to H1 RNA in vitro. Rpp20 and Rpp25 bind jointly to H1 RNA, even though each protein can interact independently with this transcript. Nuclease footprinting analysis reveals that Rpp20 and Rpp25 recognize overlapping regions in the P2 and P3 domains of H1 RNA. Rpp21 and Rpp29, which are sufficient for reconstitution of the endonucleolytic activity, bind to separate regions in the catalytic domain of H1 RNA. Common themes and discrepancies in the RNA-protein interactions between human nuclear RNase P and its related yeast and archaeal counterparts provide a rationale for the assembly of the fully active form of this enzyme.


Asunto(s)
Subunidades de Proteína/metabolismo , ARN/metabolismo , Ribonucleasa P/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , Secuencia de Bases , Sitios de Unión , Humanos , Magnesio/farmacología , Datos de Secuencia Molecular , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribonucleasa P/química , Ribonucleasa P/genética , Ribonucleasas/genética , Ribonucleasas/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
13.
Nucleic Acids Res ; 38(22): 7885-94, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20716516

RESUMEN

RNase P, a catalytic ribonucleoprotein (RNP), is best known for its role in precursor tRNA processing. Recent discoveries have revealed that eukaryal RNase P is also required for transcription and processing of select non-coding RNAs, thus enmeshing RNase P in an intricate network of machineries required for gene expression. Moreover, the RNase P RNA seems to have been subject to gene duplication, selection and divergence to generate two new catalytic RNPs, RNase MRP and MRP-TERT, which perform novel functions encompassing cell cycle control and stem cell biology. We present new evidence and perspectives on the functional diversification of the RNase P RNA to highlight it as a paradigm for the evolutionary plasticity that underlies the extant broad repertoire of catalytic and unexpected regulatory roles played by RNA-driven RNPs.


Asunto(s)
Archaea/enzimología , Ribonucleasa P/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Proteínas Arqueales/fisiología , Bacterias/enzimología , Cromatina/metabolismo , Endorribonucleasas/fisiología , Eucariontes/enzimología , Evolución Molecular , Humanos , Subunidades de Proteína/fisiología , ARN Catalítico/genética , Ribonucleasa P/genética , Ribonucleasa P/metabolismo
14.
FEBS J ; 289(13): 3630-3641, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-33929081

RESUMEN

Coordination of transcription and processing of RNA is a basic principle in regulation of gene expression in eukaryotes. In the case of mRNA, coordination is primarily founded on a co-transcriptional processing mechanism by which a nascent precursor mRNA undergoes maturation via cleavage and modification by the transcription machinery. A similar mechanism controls the biosynthesis of rRNA. However, the coordination of transcription and processing of tRNA, a rather short transcript, remains unknown. Here, we present a model for high molecular weight initiation complexes of human RNA polymerase III that assemble on tRNA genes and process precursor transcripts to mature forms. These multifunctional initiation complexes may support co-transcriptional processing, such as the removal of the 5' leader of precursor tRNA by RNase P. Based on this model, maturation of tRNA is predetermined prior to transcription initiation.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Transferencia , Humanos , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/metabolismo , Transcripción Genética
15.
Transcription ; 12(1): 1-11, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622180

RESUMEN

The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.


Asunto(s)
Antivirales/inmunología , Inmunidad Innata/inmunología , ARN Polimerasa III/inmunología , Humanos
16.
Nucleic Acids Res ; 35(11): 3519-24, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17483522

RESUMEN

Ribonuclease P (RNase P) has been hitherto well known as a catalytic ribonucleoprotein that processes the 5' leader sequence of precursor tRNA. Recent studies, however, reveal a new role for nuclear forms of RNase P in the transcription of tRNA genes by RNA polymerase (pol) III, thus linking transcription with processing in the regulation of tRNA gene expression. However, RNase P is also essential for the transcription of other small noncoding RNA genes, whose precursor transcripts are not recognized as substrates for this holoenzyme. Accordingly, RNase P can act solely as a transcription factor for pol III, a role that seems to be conserved in eukarya.


Asunto(s)
ARN de Transferencia/genética , Ribonucleasa P/fisiología , Factores de Transcripción/fisiología , Núcleo Celular/enzimología , Humanos , Subunidades de Proteína/análisis , Subunidades de Proteína/fisiología , ARN Polimerasa III/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia/biosíntesis , ARN de Transferencia/metabolismo , Ribonucleasa P/análisis , Proteínas de Saccharomyces cerevisiae/fisiología , Transcripción Genética
17.
Nucleic Acids Res ; 33(16): 5120-32, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16155184

RESUMEN

The Escherichia coli ribonuclease P (RNase P) has a protein component, termed C5, which acts as a cofactor for the catalytic M1 RNA subunit that processes the 5' leader sequence of precursor tRNA. Rpp29, a conserved protein subunit of human RNase P, can substitute for C5 protein in reconstitution assays of M1 RNA activity. To better understand the role of the former protein, we compare the mode of action of Rpp29 to that of the C5 protein in activation of M1 RNA. Enzyme kinetic analyses reveal that complexes of M1 RNA-Rpp29 and M1 RNA-C5 exhibit comparable binding affinities to precursor tRNA but different catalytic efficiencies. High concentrations of substrate impede the activity of the former complex. Rpp29 itself exhibits high affinity in substrate binding, which seems to reduce the catalytic efficiency of the reconstituted ribonucleoprotein. Rpp29 has a conserved C-terminal domain with an Sm-like fold that mediates interaction with M1 RNA and precursor tRNA and can activate M1 RNA. The results suggest that distinct protein folds in two unrelated protein cofactors can facilitate transition from RNA- to ribonucleoprotein-based catalysis by RNase P.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Precursores del ARN/metabolismo , ARN de Transferencia/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/fisiología , Ribonucleasas/fisiología , Ribonucleoproteínas/fisiología , Regiones no Traducidas 5' , Secuencia de Aminoácidos , Catálisis , Secuencia Conservada , Humanos , Cinética , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Precursores del ARN/química , ARN de Transferencia/química , Ribonucleasas/química , Ribonucleasas/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Especificidad por Sustrato
18.
Sci Rep ; 7(1): 1002, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28432356

RESUMEN

DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs.


Asunto(s)
Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Reparación del ADN por Recombinación , Ribonucleasa P/genética , Ribonucleasas/genética , Ribonucleoproteínas/genética , Línea Celular , ADN/efectos de la radiación , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/química , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasas/metabolismo , Ribonucleoproteínas/metabolismo
19.
Nucleic Acids Res ; 31(16): 4836-46, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12907726

RESUMEN

The human ribonucleoprotein ribonuclease P (RNase P), processing tRNA, has at least 10 distinct protein subunits. Many of these subunits, including the autoimmune antigen Rpp38, are shared by RNase MRP, a ribonucleoprotein enzyme required for processing of rRNA. We here show that constitutive expression of exogenous, tagged Rpp38 protein in HeLa cells affects processing of tRNA precursors. Alterations in the site-specific cleavage and in the steady-state level of 3' sequences of the internal transcribed spacer 1 of rRNA are also observed. These processing defects are accompanied by selective shut-off of expression of Rpp38 and by low expression of the tagged protein. RNase P purified from these cells exhibits impaired activity in vitro. Moreover, inhibition of Rpp38 by the use of small interfering RNA causes accumulation of the initiator methionine tRNA precursor. Expression of other protein components, but not of the H1 RNA subunit, is coordinately inhibited. Our results reveal that normal expression of Rpp38 is required for the biosynthesis of intact RNase P and for the normal processing of stable RNA in human cells.


Asunto(s)
Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN , Ribonucleasa P/metabolismo , Autoantígenos/genética , Autoantígenos/metabolismo , ADN Espaciador Ribosómico/genética , ADN Espaciador Ribosómico/metabolismo , Expresión Génica , Células HeLa , Histidina/genética , Humanos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Ribosómico 5.8S/genética , ARN Ribosómico 5.8S/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribonucleasa P/genética , Transfección
20.
PLoS One ; 3(12): e4072, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19115013

RESUMEN

BACKGROUND: Human RNase P has been initially described as a tRNA processing enzyme, consisting of H1 RNA and at least ten distinct protein subunits. Recent findings, however, indicate that this catalytic ribonucleoprotein is also required for transcription of small noncoding RNA genes by RNA polymerase III (Pol III). Notably, subunits of human RNase P are localized in the nucleolus, thus raising the possibility that this ribonucleoprotein complex is implicated in transcription of rRNA genes by Pol I. METHODOLOGY/PRINCIPAL FINDINGS: By using biochemical and reverse genetic means we show here that human RNase P is required for efficient transcription of rDNA by Pol I. Thus, inactivation of RNase P by targeting its protein subunits for destruction by RNA interference or its H1 RNA moiety for specific cleavage causes marked reduction in transcription of rDNA by Pol I. However, RNase P restores Pol I transcription in a defined reconstitution system. Nuclear run on assays reveal that inactivation of RNase P reduces the level of nascent transcription by Pol I, and more considerably that of Pol III. Moreover, RNase P copurifies and associates with components of Pol I and its transcription factors and binds to chromatin of the promoter and coding region of rDNA. Strikingly, RNase P detaches from transcriptionally inactive rDNA in mitosis and reassociates with it at G1 phase through a dynamic and stepwise assembly process that is correlated with renewal of transcription. CONCLUSIONS/SIGNIFICANCE: Our findings reveal that RNase P activates transcription of rDNA by Pol I through a novel assembly process and that this catalytic ribonucleoprotein determines the transcription output of Pol I and Pol III, two functionally coordinated transcription machineries.


Asunto(s)
Cromatina/metabolismo , ARN Polimerasa I/metabolismo , Ribonucleasa P/metabolismo , Transcripción Genética , Ciclo Celular , Nucléolo Celular/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Células HeLa , Humanos , Regiones Promotoras Genéticas , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , ARN Polimerasa I/genética , ARN Polimerasa III/genética , ARN Polimerasa III/metabolismo , Ribonucleasa P/genética , Ribonucleoproteínas/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA