Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Parasitol Res ; 122(1): 195-200, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36378331

RESUMEN

Plasmodium knowlesi is a simian malaria parasite that causes significant zoonotic infections in Southeast Asia, particularly in Malaysia. The Plasmodium thrombospondin-related apical merozoite protein (TRAMP) plays an essential role in the invasion of the parasite into its host erythrocyte. The present study investigated the genetic polymorphism and natural selection of the full length PkTRAMP from P. knowlesi clinical isolates from Malaysia. Blood samples (n = 40) were collected from P. knowlesi malaria patients from Peninsular Malaysia and Malaysian Borneo. The PkTRAMP gene was amplified using PCR, followed by cloning into a plasmid vector and sequenced. Results showed that the nucleotide diversity of PkTRAMP was low (π: 0.009). Z-test results indicated negative (purifying) selection of PkTRAMP. The alignment of the deduced amino acid sequences of PkTRAMP of Peninsular Malaysia and Malaysian Borneo revealed 38 dimorphic sites. A total of 27 haplotypes were identified from the amino acid sequence alignment. Haplotype analysis revealed that there was no clustering of PkTRAMP from Peninsular Malaysia and Malaysian Borneo.


Asunto(s)
Malaria , Plasmodium knowlesi , Humanos , Variación Genética , Malaria/parasitología , Malasia , Merozoítos/metabolismo , Plasmodium knowlesi/genética , Plasmodium knowlesi/metabolismo , Polimorfismo Genético , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
2.
Exp Parasitol ; 239: 108310, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35724931

RESUMEN

In order to ascertain the results of the LAMP technique, different end-point detection methods can be employed. However, these methods require sophisticated equipment. To simplify current end-point detection methods for the diagnosis of malaria, we propose the incorporation of colorimetric dyes: malachite green (MG), phenol red (PR), and xylenol orange (XO) in the LAMP assay. To evaluate the optimum concentration of dyes, 5 different concentrations (50 µM, 75 µM, 100 µM, 125 µM, and 150 µM) were used with buffer pH 8.5 and pH 8.8, respectively. The results showed that 125 µM of MG at pH 8.8 produced the most obvious colour change. A total of 71 clinical blood samples of Plasmodium knowlesi, Plasmodium malariae, Plasmodium vivax, Plasmodium falciparum, and healthy donors were tested using MG-LAMP. It showed 100% sensitivity and specificity. The simplicity and affordability of this method make it ideal to be used as an end-point detection method for malaria diagnosis in resource limited settings.


Asunto(s)
Colorimetría , Malaria , Colorantes , Humanos , Malaria/diagnóstico , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Sensibilidad y Especificidad
3.
Malar J ; 20(1): 426, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34715864

RESUMEN

BACKGROUND: Plasmodium knowlesi, a simian malaria parasite infection, increases as Plasmodium falciparum and Plasmodium vivax infections decrease in Johor, Malaysia. Therefore, this study aimed to identify the distribution of vectors involved in knowlesi malaria transmission in Johor. This finding is vital in estimating hotspot areas for targeted control strategies. METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor. RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km. CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.


Asunto(s)
Anopheles/fisiología , Erradicación de la Enfermedad/estadística & datos numéricos , Malaria/epidemiología , Mosquitos Vectores/parasitología , Plasmodium knowlesi/fisiología , Distribución Animal , Animales , Malasia/epidemiología
4.
Clin Infect Dis ; 70(3): 361-367, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-30889244

RESUMEN

BACKGROUND: Malaysia aims to eliminate malaria by 2020. However, while cases of Plasmodium falciparum and Plasmodium vivax have decreased substantially, the incidence of zoonotic malaria from Plasmodium knowlesi continues to increase, presenting a major challenge to regional malaria control efforts. Here we report incidence of all Plasmodium species in Sabah, including zoonotic P. knowlesi, during 2015-2017. METHODS: Microscopy-based malaria notification data and polymerase chain reaction (PCR) results were obtained from the Sabah Department of Health and State Public Health Laboratory, respectively, from January 2015 to December 2017. From January 2016 this was complemented by a statewide prospective hospital surveillance study. Databases were matched, and species was determined by PCR, or microscopy if PCR was not available. RESULTS: A total of 3867 malaria cases were recorded between 2015 and 2017, with PCR performed in 93%. Using PCR results, and microscopy if PCR was unavailable, P. knowlesi accounted for 817 (80%), 677 (88%), and 2030 (98%) malaria cases in 2015, 2016, and 2017, respectively. P. falciparum accounted for 110 (11%), 45 (6%), and 23 (1%) cases and P. vivax accounted for 61 (6%), 17 (2%), and 8 (0.4%) cases, respectively. Of those with P. knowlesi, the median age was 35 (interquartile range: 24-47) years, and 85% were male. CONCLUSIONS: Malaysia is approaching elimination of the human-only Plasmodium species. However, the ongoing increase in P. knowlesi incidence presents a major challenge to malaria control and warrants increased focus on knowlesi-specific prevention activities. Wider molecular surveillance in surrounding countries is required.


Asunto(s)
Malaria , Plasmodium knowlesi , Adulto , Femenino , Humanos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium knowlesi/genética , Estudios Prospectivos , Adulto Joven
5.
Malar J ; 19(1): 55, 2020 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005228

RESUMEN

BACKGROUND: To date, most of the recent publications on malaria in Malaysia were conducted in Sabah, East Malaysia focusing on the emergence of Plasmodium knowlesi. This analysis aims to describe the incidence, mortality and case fatality rate of malaria caused by all Plasmodium species between Peninsular Malaysia and East Malaysia (Sabah and Sarawak) over a 5-year period (2013-2017). METHODS: This is a secondary data review of all diagnosed and reported malaria confirmed cases notified to the Ministry of Health, Malaysia between January 2013 and December 2017. RESULTS: From 2013 to 2017, a total of 16,500 malaria cases were notified in Malaysia. The cases were mainly contributed from Sabah (7150; 43.3%) and Sarawak (5684; 34.4%). Majority of the patients were male (13,552; 82.1%). The most common age group in Peninsular Malaysia was 20 to 29 years (1286; 35.1%), while Sabah and Sarawak reported highest number of malaria cases in age group of 30 to 39 years (2776; 21.6%). The top two races with malaria in Sabah and Sarawak were Bumiputera Sabah (5613; 43.7%) and Bumiputera Sarawak (4512; 35.1%), whereas other ethnic group (1232; 33.6%) and Malays (1025; 28.0%) were the two most common races in Peninsular Malaysia. Plasmodium knowlesi was the commonest species in Sabah and Sarawak (9902; 77.1%), while there were more Plasmodium vivax cases (1548; 42.2%) in Peninsular Malaysia. The overall average incidence rate, mortality rate and case fatality rates for malaria from 2013 to 2017 in Malaysia were 0.106/1000, 0.030/100,000 and 0.27%, respectively. Sarawak reported the highest average incidence rate of 0.420/1000 population followed by Sabah (0.383/1000). Other states in Peninsular Malaysia reported below the national average incidence rate with less than 0.100/1000. CONCLUSIONS: There were different trends and characteristics of notified malaria cases in Peninsular Malaysia and Sabah and Sarawak. They provide useful information to modify current prevention and control measures so that they are customised to the peculiarities of disease patterns in the two regions in order to successfully achieve the pre-elimination of human-only species in the near future.


Asunto(s)
Malaria/epidemiología , Adolescente , Adulto , Distribución por Edad , Niño , Femenino , Humanos , Incidencia , Malaria/etnología , Malaria/mortalidad , Malaria/parasitología , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Plasmodium knowlesi/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium ovale/aislamiento & purificación , Distribución por Sexo , Adulto Joven
6.
Malar J ; 19(1): 306, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32854695

RESUMEN

BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples. METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated. RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi. CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.


Asunto(s)
Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Monitoreo Epidemiológico , Plasmodium knowlesi/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/estadística & datos numéricos , Adolescente , Adulto , Niño , Femenino , Humanos , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/aislamiento & purificación , Plasmodium malariae/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Adulto Joven
7.
Malar J ; 17(1): 463, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-30526613

RESUMEN

BACKGROUND: Spreading Plasmodium falciparum artemisinin drug resistance threatens global malaria public health gains. Limited data exist to define the extent of P. falciparum artemisinin resistance southeast of the Greater Mekong region in Malaysia. METHODS: A clinical efficacy study of oral artesunate (total target dose 12 mg/kg) daily for 3 days was conducted in patients with uncomplicated falciparum malaria and a parasite count < 100,000/µL admitted to 3 adjacent district hospitals in Sabah, East Malaysia. On day 3 and 4 all patients were administered split dose mefloquine (total dose 25 mg/kg) and followed for 28 days. Twenty-one kelch13 polymorphisms associated with P. falciparum artemisinin resistance were also evaluated in P. falciparum isolates collected from patients presenting to health facilities predominantly within the tertiary referral area of western Sabah between 2012 and 2016. RESULTS: In total, 49 patients were enrolled and treated with oral artesunate. 90% (44/49) of patients had cleared their parasitaemia by 48 h and 100% (49/49) within 72 h. The geometric mean parasite count at presentation was 9463/µL (95% CI 6757-13,254), with a median time to 50% parasite clearance of 4.3 h (IQR 2.0-8.4). There were 3/45 (7%) patients with a parasite clearance slope half-life of ≥ 5 h. All 278 P. falciparum isolates evaluated were wild-type for kelch13 markers. CONCLUSION: There is no suspected or confirmed evidence of endemic artemisinin-resistant P. falciparum in this pre-elimination setting in Sabah, Malaysia. Current guidelines recommending first-line treatment with ACT remain appropriate for uncomplicated malaria in Sabah, Malaysia. Ongoing surveillance is needed southeast of the Greater Mekong sub-region.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Malaria Falciparum , Plasmodium falciparum , Adolescente , Adulto , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Niño , Preescolar , Femenino , Marcadores Genéticos/genética , Humanos , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Carga de Parásitos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Resultado del Tratamiento , Adulto Joven
8.
Emerg Infect Dis ; 22(8): 1371-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27433965

RESUMEN

Infections of humans with the zoonotic simian malaria parasite Plasmodium knowlesi occur throughout Southeast Asia, although most cases have occurred in Malaysia, where P. knowlesi is now the dominant malaria species. This apparently skewed distribution prompted an investigation of the phylogeography of this parasite in 2 geographically separated regions of Malaysia, Peninsular Malaysia and Malaysian Borneo. We investigated samples collected from humans and macaques in these regions. Haplotype network analyses of sequences from 2 P. knowlesi genes, type A small subunit ribosomal 18S RNA and cytochrome c oxidase subunit I, showed 2 genetically distinct divergent clusters, 1 from each of the 2 regions of Malaysia. We propose that these parasites represent 2 distinct P. knowlesi types that independently became zoonotic. These types would have evolved after the sea-level rise at the end of the last ice age, which separated Malaysian Borneo from Peninsular Malaysia.


Asunto(s)
Variación Genética , Malaria/veterinaria , Enfermedades de los Monos/parasitología , Plasmodium knowlesi/genética , Animales , Complejo IV de Transporte de Electrones/genética , Humanos , Macaca , Malaria/epidemiología , Malaria/parasitología , Malasia/epidemiología , Enfermedades de los Monos/epidemiología , ARN Ribosómico 18S/genética , Zoonosis
9.
Malar J ; 15: 63, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26850038

RESUMEN

BACKGROUND: Malaria cases persist in some remote areas in Sabah and Sarawak despite the ongoing and largely successful malaria control programme conducted by the Vector Borne Disease Control Programme, Ministry Of Health, Malaysia. Point mutations in the genes that encode the two enzymes involved in the folate biosynthesis pathway, dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS) enzymes confer resistance to pyrimethamine and sulfadoxine respectively, in both Plasmodium falciparum and P. vivax. The aim of the current study was to determine the mutation on both pvdhfr at codon 13, 33, 57, 58, 61, 117, and 173 and pvdhps genes at codon 383 and 553, which are potentially associated with resistance to pyrimethamine and sulfadoxine in P. vivax samples in Sabah. METHODS: Every individual was screened for presence of malaria infection using a commercial rapid dipstick assay, ParaMax-3™ (Zephyr Biomedical, India). Individuals tested positive for P. vivax had blood collected and parasite DNA extracted. The pvdhfr and pvdhps genes were amplified by nested-PCR. Restriction fragment length polymorphism (RFLP) was carried out for detection of specific mutations in pvdhfr at codons 13Leu, 33Leu, 57Ile/Leu, 58Arg, 61Met, 117Asn/Thr, and 173Leu and pvdhps at codons 383Gly and 553Gly. The PCR-RFLP products were analysed using the Agilent 2100 Bioanalyzer (Agilent Technology, AS). RESULTS: A total of 619 and 2119 individuals from Kalabakan and Kota Marudu, respectively participated in the study. In Kalabakan and Kota Marudu, 9.37 and 2.45 % were tested positive for malaria and the positivity for P. vivax infection was 4.2 and 0.52 %, respectively. No mutation was observed at codon 13, 33 and 173 on pvdhfr and at codon 553 on pvdhps gene on samples from Kalabakan and Kota Marudu. One-hundred per cent mutations on pvdhfr were at 57Leu and 117Thr. Mutation at 58Arg and 61Met was observed to be higher in Kota Marudu 72.73 %. Mutation at 383Gly on pvdhps was highest in Kalabakan with 80.77 %. There are four distinct haplotypes of pvdhfr/pvdhps combination. CONCLUSIONS: The presence of triple and quintuple mutation combination suggest that the P. vivax isolates exhibit a high degree of resistant to sulfadoxine, pyrimethamine and sulfadoxine-pyrimethamine combination therapy.


Asunto(s)
Dihidropteroato Sintasa/genética , Malaria Vivax/parasitología , Plasmodium vivax , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Haplotipos/genética , Humanos , Malaria Vivax/epidemiología , Malasia/epidemiología , Mutación , Plasmodium vivax/genética , Plasmodium vivax/patogenicidad , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción
10.
J Infect Dis ; 211(7): 1104-10, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25301955

RESUMEN

BACKGROUND: Plasmodium knowlesi is the commonest cause of malaria in Malaysia, but little is known regarding infection during pregnancy. METHODS: To investigate comparative risk and consequences of knowlesi malaria during pregnancy, we reviewed (1) Sabah Health Department malaria-notification records created during 2012-2013, (2) prospectively collected data from all females with polymerase chain reaction (PCR)-confirmed malaria who were admitted to a Sabah tertiary care referral hospital during 2011-2014, and (3) malaria microscopy and clinical data recorded at a Sabah tertiary care women and children's hospital during 2010-2014. RESULTS: During 2012-2013, 774 females with microscopy-diagnosed malaria were notified, including 252 (33%), 172 (20%), 333 (43%), and 17 (2%) with Plasmodium falciparum infection, Plasmodium vivax infection, Plasmodium malariae/Plasmodium knowlesi infection, and mixed infection, respectively. Among females aged 15-45 years, pregnancy was reported in 18 of 124 (14.5%), 9 of 93 (9.7%), and 4 of 151 (2.6%) P. falciparum, P. vivax, and P. malariae/P. knowlesi notifications respectively (P = .002). Three females with knowlesi malaria were confirmed as pregnant: 2 had moderate anemia, and 1 delivered a preterm low-birth-weight infant. There were 17, 7, and 0 pregnant women with falciparum, vivax, and knowlesi malaria, respectively, identified from the 2 referral hospitals. CONCLUSIONS: Although P. knowlesi is the commonest malaria species among females in Sabah, P. knowlesi infection is relatively rare during pregnancy. It may however be associated with adverse maternal and pregnancy outcomes.


Asunto(s)
Malaria/epidemiología , Plasmodium knowlesi/aislamiento & purificación , Complicaciones Parasitarias del Embarazo/epidemiología , Adolescente , Adulto , Anemia , ADN Protozoario/genética , Notificación de Enfermedades , Femenino , Geografía , Humanos , Malaria/parasitología , Malasia/epidemiología , Persona de Mediana Edad , Plasmodium knowlesi/genética , Reacción en Cadena de la Polimerasa , Embarazo , Complicaciones Parasitarias del Embarazo/parasitología , Estudios Prospectivos , Centros de Atención Terciaria , Adulto Joven
11.
Malar J ; 13: 24, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24443824

RESUMEN

BACKGROUND: Countries in the Asia Pacific region have made great progress in the fight against malaria; several are rapidly approaching elimination. However, malaria control programmes operating in elimination settings face substantial challenges, particularly around mobile migrant populations, access to remote areas and the diversity of vectors with varying biting and breeding behaviours. These challenges can be addressed through subnational collaborations with commercial partners, such as mining or plantation companies, that can conduct or support malaria control activities to cover employees. Such partnerships can be a useful tool for accessing high-risk populations and supporting malaria elimination goals. METHODS: This observational qualitative case study employed semi-structured key informant interviews to describe partnerships between the Malaysian Malaria Control Programme (MCP), and private palm oil, rubber and acacia plantations in the state of Sabah. Semi-structured interview guides were used to examine resource commitments, incentives, challenges, and successes of the collaborations. RESULTS: Interviews with workers from private plantations and the state of Sabah MCP indicated that partnerships with the commercial sector had contributed to decreases in incidence at plantation sites since 1991. Several plantations contribute financial and human resources toward malaria control efforts and all plantations frequently communicate with the MCP to help monitor the malaria situation on-site. Management of partnerships between private corporations and government entities can be challenging, as prioritization of malaria control may change with annual profits or arrival of new management. CONCLUSIONS: Partnering with the commercial sector has been an essential operational strategy to support malaria elimination in Sabah. The successes of these partnerships rely on a common understanding that elimination will be a mutually beneficial outcome for employers and the general public. Best practices included consistent communication, developing government-staffed subsector offices for malaria control on-site, engaging commercial plantations to provide financial and human resources for malaria control activities, and the development of new worker screening programmes. The successes and challenges associated with partnerships between the public and commercial sector can serve as an example for other malaria-eliminating countries with large plantation sectors, and may also be applied to other sectors that employ migrant workers or have commercial enterprises in hard to reach areas.


Asunto(s)
Malaria/prevención & control , Salud Pública/métodos , Asociación entre el Sector Público-Privado , Agricultura Forestal , Gobierno , Humanos , Malasia , Salud Pública/economía , Encuestas y Cuestionarios
12.
Malar J ; 13: 168, 2014 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-24886266

RESUMEN

BACKGROUND: Plasmodium knowlesi is a simian parasite that has been recognized as the fifth species causing human malaria. Naturally-acquired P. knowlesi infection is widespread among human populations in Southeast Asia. The aim of this epidemiological study was to determine the incidence and distribution of malaria parasites, with a particular focus on human P. knowlesi infection in Malaysia. METHODS: A total of 457 microscopically confirmed, malaria-positive blood samples were collected from 22 state and main district hospitals in Malaysia between September 2012 and December 2013. Nested PCR assay targeting the 18S rRNA gene was used to determine the infecting Plasmodium species. RESULTS: A total of 453 samples were positive for Plasmodium species by using nested PCR assay. Plasmodium knowlesi was identified in 256 (56.5%) samples, followed by 133 (29.4%) cases of Plasmodium vivax, 49 (10.8%) cases of Plasmodium falciparum, two (0.4%) cases of Plasmodium ovale and one (0.2%) case of Plasmodium malariae. Twelve mixed infections were detected, including P. knowlesi/P. vivax (n = 10), P. knowlesi/P. falciparum (n = 1), and P. falciparum/P. vivax (n = 1). Notably, P. knowlesi (Included mixed infections involving P. knowlesi (P. knowlesi/P. vivax and P. knowlesi /P. falciparum)) showed the highest proportion in Sabah (84/115 cases, prevalence of 73.0%), Sarawak (83/120, 69.2%), Kelantan (42/56, 75.0%), Pahang (24/25, 96.0%), Johor (7/9, 77.8%), and Terengganu (4/5, 80.0%,). In contrast, the rates of P. knowlesi infection in Selangor and Negeri Sembilan were found to be 16.2% (18/111 cases) and 50.0% (5/10 cases), respectively. Sample of P. knowlesi was not obtained from Kuala Lumpur, Melaka, Perak, Pulau Pinang, and Perlis during the study period, while a microscopically-positive sample from Kedah was negative by PCR. CONCLUSION: In addition to Sabah and Sarawak, which have been known for high prevalence of P. knowlesi infection, the findings from this study highlight the widespread distribution of P. knowlesi in many Peninsular Malaysia states.


Asunto(s)
Malaria/epidemiología , Malaria/parasitología , Plasmodium/clasificación , Plasmodium/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , ADN Ribosómico/genética , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium/genética , ARN Ribosómico 18S/genética , Adulto Joven
13.
Malar J ; 13: 390, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25272973

RESUMEN

BACKGROUND: While Malaysia has had great success in controlling Plasmodium falciparum and Plasmodium vivax, notifications of Plasmodium malariae and the microscopically near-identical Plasmodium knowlesi increased substantially over the past decade. However, whether this represents microscopic misdiagnosis or increased recognition of P. knowlesi has remained uncertain. METHODS: To describe the changing epidemiology of malaria in Sabah, in particular the increasing incidence of P. knowlesi, a retrospective descriptive study was undertaken involving a review of Department of Health malaria notification data from 2012-2013, extending a previous review of these data from 1992-2011. In addition, malaria PCR and microscopy data from the State Public Health Laboratory were reviewed to estimate the accuracy of the microscopy-based notification data. RESULTS: Notifications of P. malariae/P. knowlesi increased from 703 in 2011 to 815 in 2012 and 996 in 2013. Notifications of P. vivax and P. falciparum decreased from 605 and 628, respectively, in 2011, to 297 and 263 in 2013. In 2013, P. malariae/P. knowlesi accounted for 62% of all malaria notifications compared to 35% in 2011. Among 1,082 P. malariae/P. knowlesi blood slides referred for PCR testing during 2011-2013, there were 924 (85%) P. knowlesi mono-infections, 30 (2.8%) P. falciparum, 43 (4.0%) P. vivax, seven (0.6%) P. malariae, six (0.6%) mixed infections, 31 (2.9%) positive only for Plasmodium genus, and 41 (3.8%) Plasmodium-negative. Plasmodium knowlesi mono-infection accounted for 32/156 (21%) and 33/87 (38%) blood slides diagnosed by microscopy as P. falciparum and P. vivax, respectively. Twenty-six malaria deaths were reported during 2010-2013, including 12 with 'P. malariae/P. knowlesi' (all adults), 12 with P. falciparum (seven adults), and two adults with P. vivax. CONCLUSIONS: Notifications of P. malariae/P. knowlesi in Sabah are increasing, with this trend likely reflecting a true increase in incidence of P. knowlesi and presenting a major threat to malaria control and elimination in Malaysia. With the decline of P. falciparum and P. vivax, control programmes need to incorporate measures to protect against P. knowlesi, with further research required to determine effective interventions.


Asunto(s)
Malaria/epidemiología , Malaria/parasitología , Plasmodium knowlesi/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Femenino , Humanos , Incidencia , Lactante , Recién Nacido , Malasia/epidemiología , Masculino , Persona de Mediana Edad , Plasmodium knowlesi/genética , Plasmodium malariae/genética , Plasmodium malariae/aislamiento & purificación , Reacción en Cadena de la Polimerasa , Estudios Retrospectivos , Estaciones del Año , Adulto Joven
14.
Am J Trop Med Hyg ; 110(4): 648-652, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412548

RESUMEN

Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification technique that can amplify specific nucleic acids at a constant temperature (63-65°C) within a short period (<1 hour). In this study, we report the utilization of recombinase-aided LAMP to specifically amplify the 18S sRNA of Plasmodium knowlesi. The method was built on a conventional LAMP assay by inclusion of an extra enzyme, namely recombinase, into the master mixture. With the addition of recombinase into the LAMP assay, the assay speed was executed within a time frame of less than 28 minutes at 65°C. We screened 55 P. knowlesi samples and 47 non-P. knowlesi samples. No cross-reactivity was observed for non-P. knowlesi samples, and the detection limit for recombinase-aided LAMP was one copy for P. knowlesi after LAMP amplification. It has been reported elsewhere that LAMP can be detected through fluorescent readout systems. Although such systems result in considerable limits of detection, the need for sophisticated equipment limits their use. Hence, we used here a colorimetric detection platform for the evaluation of the LAMP assay's performance. This malachite green-based recombinase-aided LAMP assay enabled visualization of results with the naked eye. Negative samples were observed by a change in color from green to colorless, whereas positive samples remained green. Our results demonstrate that the LAMP assay developed here is a convenient, sensitive, and useful diagnostic tool for the rapid detection of knowlesi malaria parasites. This method is suitable for implementation in remote healthcare settings, where centralized laboratory facilities, funds, and clinicians are in short supply.


Asunto(s)
Malaria , Plasmodium knowlesi , Humanos , Plasmodium knowlesi/genética , Malaria/diagnóstico , Malaria/parasitología , Recombinasas , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos
15.
medRxiv ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38746350

RESUMEN

Background: The emergence of the zoonotic monkey parasite Plasmodium knowlesi as the dominant cause of malaria in Malaysia has disrupted current national WHO elimination goals. Malaysia has free universal access to malaria care; however, out-of-pocket costs are unknown. This study estimated household costs of illness attributable to malaria due to P. knowlesi against other non-zoonotic Plasmodium species infections in Sabah, Malaysia. Methodology/Principal Findings: Household costs were estimated from patient-level surveys collected from four hospitals between 2013 and 2016. Direct costs including medical and associated travel costs, and indirect costs due to lost productivity were included. One hundred and fifty-two malaria cases were enrolled: P. knowlesi (n=108), P. vivax (n=22), P. falciparum (n=16), and P. malariae (n=6). Costs were inflated to 2022 Malaysian Ringgits and reported in United States dollars (US$). Across all cases, the mean total costs were US$138 (SD=108), with productivity losses accounting for 58% of costs (US$80; SD=73). P. vivax had the highest mean total household cost at US$210, followed by P. knowlesi (US$127), P. falciparum (US$126), and P. malariae (US$105). Most patients (80%) experienced direct health costs above 10% of monthly income, with 58 (38%) patients experiencing health spending over 25% of monthly income, consistent with catastrophic health expenditure. Conclusions/Significance: Despite Malaysia's free health-system care for malaria, patients and families face other related medical, travel, and indirect costs. Household out-of-pocket costs were driven by productivity losses; primarily attributed to infections in working-aged males in rural agricultural-based occupations. Costs for P. knowlesi were comparable to P. falciparum and lower than P. vivax. The higher P. vivax costs related to direct health facility costs for repeat monitoring visits given the liver-stage treatment required. AUTHOR SUMMARY: Knowlesi malaria is due to infection with a parasite transmitted by mosquitos from monkeys to humans. Most people who are infected work or live near the forest. It is now the major type of malaria affecting humans in Malaysia. The recent increase of knowlesi malaria cases in humans has impacted individuals, families, and health systems in Southeast Asia. Although the region has made substantial progress towards eliminating human-only malaria species, knowlesi malaria threatens elimination targets as traditional control measures do not address the parasite reservoir in monkeys. The economic burden of illness due to knowlesi malaria has not previously been estimated or subsequently compared with other malaria species. We collected data on the cost of illness to households in Sabah, Malaysia, to estimate their related total economic burden. Medical costs and time off work and usual activities were substantial in patients with the four species of malaria diagnosed during the time of this study. This research highlights the financial burden which households face when seeking care for malaria in Malaysia, despite the free treatment provided by the government.

16.
iScience ; 27(2): 108942, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38327789

RESUMEN

Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.

17.
Malar J ; 12: 198, 2013 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-23758930

RESUMEN

BACKGROUND: Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo. METHODS: A total number of 619 individuals were screened from 23 study sites of which 31 were positive for P. falciparum. Analysis of restriction fragment length polymorphisms (RFLP) was used to identify polymorphism in the pfdhfr and pfdhps genes at positions 16, 51, 59, 108, 164 and 437, 540, 581, respectively. RESULTS: All samples had at least one mutation in each of the genes associated with drug resistance. The prevalence of pfdhfr 59arg, 164leu and 108asn were 100%, 80.65% and 58.06%, respectively. Pfdhps mutants 437gly and 581gly accounted for 100% and 74.19% respectively. In pfdhfr, the most common mutant genotypes were combination 59arg + 164leu (22.58%) and 59arg + 108asn + 164leu (51.61%). In pfdhps the most common genotype was 437gly + 581gly (74.19%). One individual (3.22%) harboured parasites with four pfdhfr (16 val + 59arg + 108asn + 164leu) and two pfdhps (437gly + 581gly) mutations. The highest quintuple pfdhfr/pfdhps (41.94%) was three pfdhfr (59arg + 108asn + 164gly) and two pfdhps (437gly + 581gly). CONCLUSION: The data suggest a high prevalence of genetic variations conferring resistance to SP which can predict treatment failure before becoming clinically evident. In areas like this, the use of SP may no longer be indicated.


Asunto(s)
Dihidropteroato Sintasa/genética , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Tetrahidrofolato Deshidrogenasa/genética , Antimaláricos/farmacología , Borneo/epidemiología , Resistencia a Medicamentos/genética , Humanos , Malaria Falciparum/epidemiología , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Plasmodium falciparum/aislamiento & purificación , Polimorfismo Genético , Polimorfismo de Longitud del Fragmento de Restricción
18.
Am J Trop Med Hyg ; 108(5): 882-886, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-36913921

RESUMEN

This study highlights the development of two lateral flow recombinase polymerase amplification assays for the diagnosis of human malaria. The lateral flow cassettes contained test lines that captured biotin-, 6-carboxyfluorescein, digoxigenin-, cyanine 5-, and dinitrophenyl-labeled amplicons. The overall process can be completed in 30 minutes. Recombinase polymerase amplification coupled with lateral flow had a detection limit of 1 copy/µL for Plasmodium knowlesi, Plasmodium vivax, and Plasmodium falciparum. No cross-reactivity was observed among nonhuman malaria parasites such as Plasmodium coatneyi, Plasmodium cynomolgi, Plasmodium brasilanium, Plasmodium inui, Plasmodium fragile, Toxoplasma gondii, Sarcocystis spp., Brugia spp., and 20 healthy donors. It is rapid, highly sensitive, robust, and easy to use. The result can be read without the need for special equipment and thus has the potential to serve as an effective alternative to polymerase chain reaction methods for the diagnosis of malaria.


Asunto(s)
Malaria , Plasmodium knowlesi , Plasmodium , Humanos , Recombinasas , Plasmodium/genética , Malaria/diagnóstico , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium vivax/genética
19.
Trop Med Infect Dis ; 8(8)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37624327

RESUMEN

The initial and vital stage in the diagnosis of malaria involves extracting DNA. The efficiency of malaria testing is restricted by the multiple steps involved in commercial DNA extraction kits. We attempted to improve an existing loop-mediated isothermal amplification (LAMP) for the detection of Plasmodium knowlesi by using a simple DNA extraction approach, making it a feasible option for mass screening. We utilized a simple nucleic acid extraction method directly from whole blood for the detection of P. knowlesi, taking only 5 min to complete. The extracted DNA was evaluated by two fluorescent-based LAMP and one colorimetric-based LAMP assay. The detection limit for both SYTO-LAMP and SYBR green-LAMP was 0.00001% and 0.0001% parasitemia, respectively. Meanwhile, neutral red-LAMP had a detection limit of 0.01% parasitemia. Combining this simple and inexpensive DNA extraction method, SYTO-LAMP could serve as an alternative molecular diagnosis for the detection of P. knowlesi and other human Plasmodium spp.

20.
Front Microbiol ; 14: 1126418, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36876062

RESUMEN

The emergence of potentially life-threatening zoonotic malaria caused by Plasmodium knowlesi nearly two decades ago has continued to challenge Malaysia healthcare. With a total of 376 P. knowlesi infections notified in 2008, the number increased to 2,609 cases in 2020 nationwide. Numerous studies have been conducted in Malaysian Borneo to determine the association between environmental factors and knowlesi malaria transmission. However, there is still a lack of understanding of the environmental influence on knowlesi malaria transmission in Peninsular Malaysia. Therefore, our study aimed to investigate the ecological distribution of human P. knowlesi malaria in relation to environmental factors in Peninsular Malaysia. A total of 2,873 records of human P. knowlesi infections in Peninsular Malaysia from 1st January 2011 to 31st December 2019 were collated from the Ministry of Health Malaysia and geolocated. Three machine learning-based models, maximum entropy (MaxEnt), extreme gradient boosting (XGBoost), and ensemble modeling approach, were applied to predict the spatial variation of P. knowlesi disease risk. Multiple environmental parameters including climate factors, landscape characteristics, and anthropogenic factors were included as predictors in both predictive models. Subsequently, an ensemble model was developed based on the output of both MaxEnt and XGBoost. Comparison between models indicated that the XGBoost has higher performance as compared to MaxEnt and ensemble model, with AUCROC values of 0.933 ± 0.002 and 0.854 ± 0.007 for train and test datasets, respectively. Key environmental covariates affecting human P. knowlesi occurrence were distance to the coastline, elevation, tree cover, annual precipitation, tree loss, and distance to the forest. Our models indicated that the disease risk areas were mainly distributed in low elevation (75-345 m above mean sea level) areas along the Titiwangsa mountain range and inland central-northern region of Peninsular Malaysia. The high-resolution risk map of human knowlesi malaria constructed in this study can be further utilized for multi-pronged interventions targeting community at-risk, macaque populations, and mosquito vectors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA