Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Respir Res ; 25(1): 44, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238732

RESUMEN

BACKGROUND: A decline in forced expiratory volume (FEV1) is a hallmark of respiratory diseases that are an important cause of morbidity among the elderly. While some data exist on biomarkers that are related to FEV1, we sought to do a systematic analysis of causal relations of biomarkers with FEV1. METHODS: Data from the population-based AGES-Reykjavik study were used. Serum proteomic measurements were done using 4782 DNA aptamers (SOMAmers). Data from 1479 participants with spirometric data were used to assess the association of SOMAmer measurements with FEV1 using linear regression. Bi-directional two-sample Mendelian randomisation (MR) analyses were done to assess causal relations of observationally associated SOMAmers with FEV1, using genotype and SOMAmer data from 5368 AGES-Reykjavik participants and genetic associations with FEV1 from a publicly available GWAS (n = 400,102). RESULTS: In observational analyses, 530 SOMAmers were associated with FEV1 after multiple testing adjustment (FDR < 0.05). The most significant were Retinoic Acid Receptor Responder 2 (RARRES2), R-Spondin 4 (RSPO4) and Alkaline Phosphatase, Placental Like 2 (ALPPL2). Of the 257 SOMAmers with genetic instruments available, eight were associated with FEV1 in MR analyses. Three were directionally consistent with the observational estimate, Thrombospondin 2 (THBS2), Endoplasmic Reticulum Oxidoreductase 1 Beta (ERO1B) and Apolipoprotein M (APOM). THBS2 was further supported by a colocalization analysis. Analyses in the reverse direction, testing whether changes in SOMAmer levels were caused by changes in FEV1, were performed but no significant associations were found after multiple testing adjustments. CONCLUSIONS: In summary, this large scale proteogenomic analyses of FEV1 reveals circulating protein markers of FEV1, as well as several proteins with potential causality to lung function.


Asunto(s)
Pulmón , Proteómica , Humanos , Femenino , Embarazo , Anciano , Volumen Espiratorio Forzado/genética , Placenta , Biomarcadores
2.
Nat Chem Biol ; 17(3): 280-290, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33462494

RESUMEN

Although most acute skin wounds heal rapidly, non-healing skin ulcers represent an increasing and substantial unmet medical need that urgently requires effective therapeutics. Keratinocytes resurface wounds to re-establish the epidermal barrier by transitioning to an activated, migratory state, but this ability is lost in dysfunctional chronic wounds. Small-molecule regulators of keratinocyte plasticity with the potential to reverse keratinocyte malfunction in situ could offer a novel therapeutic approach in skin wound healing. Utilizing high-throughput phenotypic screening of primary keratinocytes, we identify such small molecules, including bromodomain and extra-terminal domain (BET) protein family inhibitors (BETi). BETi induce a sustained activated, migratory state in keratinocytes in vitro, increase activation markers in human epidermis ex vivo and enhance skin wound healing in vivo. Our findings suggest potential clinical utility of BETi in promoting keratinocyte re-epithelialization of skin wounds. Importantly, this novel property of BETi is exclusively observed after transient low-dose exposure, revealing new potential for this compound class.


Asunto(s)
Proteínas de Ciclo Celular/genética , Epidermis/efectos de los fármacos , Repitelización/efectos de los fármacos , Úlcera Cutánea/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/genética , Heridas no Penetrantes/tratamiento farmacológico , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Modelos Animales de Enfermedad , Epidermis/metabolismo , Epidermis/patología , Transferencia Resonante de Energía de Fluorescencia , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/metabolismo , Queratinocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/antagonistas & inhibidores , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Repitelización/genética , Úlcera Cutánea/genética , Úlcera Cutánea/metabolismo , Úlcera Cutánea/patología , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Transcripción Genética , Heridas no Penetrantes/genética , Heridas no Penetrantes/metabolismo , Heridas no Penetrantes/patología
3.
Am J Respir Crit Care Med ; 206(3): 337-346, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35438610

RESUMEN

Rationale: Knowledge on biomarkers of interstitial lung disease is incomplete. Interstitial lung abnormalities (ILAs) are radiologic changes that may present in its early stages. Objectives: To uncover blood proteins associated with ILAs using large-scale proteomics methods. Methods: Data from two prospective cohort studies, the AGES-Reykjavik (Age, Gene/Environment Susceptibility-Reykjavik) study (N = 5,259) for biomarker discovery and the COPDGene (Genetic Epidemiology of COPD) study (N = 4,899) for replication, were used. Blood proteins were measured using DNA aptamers, targeting more than 4,700 protein analytes. The association of proteins with ILAs and ILA progression was assessed with regression modeling, as were associations with genetic risk factors. Adaptive Least Absolute Shrinkage and Selection Operator models were applied to bootstrap data samples to discover sets of proteins predictive of ILAs and their progression. Measurements and Main Results: Of 287 associations, SFTPB (surfactant protein B) (odds ratio [OR], 3.71 [95% confidence interval (CI), 3.20-4.30]; P = 4.28 × 10-67), SCGB3A1 (Secretoglobin family 3A member 1) (OR, 2.43 [95% CI, 2.13-2.77]; P = 8.01 × 10-40), and WFDC2 (WAP four-disulfide core domain protein 2) (OR, 2.42 [95% CI, 2.11-2.78]; P = 4.01 × 10-36) were most significantly associated with ILA in AGES-Reykjavik and were replicated in COPDGene. In AGES-Reykjavik, concentrations of SFTPB were associated with the rs35705950 MUC5B (mucin 5B) promoter polymorphism, and SFTPB and WFDC2 had the strongest associations with ILA progression. Multivariate models of ILAs in AGES-Reykjavik, ILAs in COPDGene, and ILA progression in AGES-Reykjavik had validated areas under the receiver operating characteristic curve of 0.880, 0.826, and 0.824, respectively. Conclusions: Novel, replicated associations of ILA, its progression, and genetic risk factors with numerous blood proteins are demonstrated as well as machine-learning-based models with favorable predictive potential. Several proteins are revealed as potential markers of early fibrotic lung disease.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Anomalías del Sistema Respiratorio , Predisposición Genética a la Enfermedad , Humanos , Pulmón , Enfermedades Pulmonares Intersticiales/epidemiología , Enfermedades Pulmonares Intersticiales/genética , Estudios Prospectivos , Proteómica , Tomografía Computarizada por Rayos X
4.
J Hepatol ; 76(1): 25-33, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600973

RESUMEN

BACKGROUND & AIMS: Identifying fibrosis in non-alcoholic fatty liver disease (NAFLD) is essential to predict liver-related outcomes and guide treatment decisions. A protein-based signature of fibrosis could serve as a valuable, non-invasive diagnostic tool. This study sought to identify circulating proteins associated with fibrosis in NAFLD. METHODS: We used aptamer-based proteomics to measure 4,783 proteins in 2 cohorts (Cohort A and B). Targeted, quantitative assays coupling aptamer-based protein pull down and mass spectrometry (SPMS) validated the profiling results in a bariatric and NAFLD cohort (Cohort C and D, respectively). Generalized linear modeling-logistic regression assessed the ability of candidate proteins to classify fibrosis. RESULTS: From the multiplex profiling, 16 proteins differed significantly by fibrosis in cohorts A (n = 62) and B (n = 98). Quantitative and robust SPMS assays were developed for 8 proteins and validated in Cohorts C (n = 71) and D (n = 84). The A disintegrin and metalloproteinase with thrombospondin motifs like 2 (ADAMTSL2) protein accurately distinguished non-alcoholic fatty liver (NAFL)/non-alcoholic steatohepatitis (NASH) with fibrosis stage 0-1 (F0-1) from at-risk NASH with fibrosis stage 2-4, with AUROCs of 0.83 and 0.86 in Cohorts C and D, respectively, and from NASH with significant fibrosis (F2-3), with AUROCs of 0.80 and 0.83 in Cohorts C and D, respectively. An 8-protein panel distinguished NAFL/NASH F0-1 from at-risk NASH (AUROCs 0.90 and 0.87 in Cohort C and D, respectively) and NASH F2-3 (AUROCs 0.89 and 0.83 in Cohorts C and D, respectively). The 8-protein panel and ADAMTSL2 protein had superior performance to the NAFLD fibrosis score and fibrosis-4 score. CONCLUSION: The ADAMTSL2 protein and an 8-protein soluble biomarker panel are highly associated with at-risk NASH and significant fibrosis; they exhibited superior diagnostic performance compared to standard of care fibrosis scores. LAY SUMMARY: Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of liver disease worldwide. Diagnosing NAFLD and identifying fibrosis (scarring of the liver) currently requires a liver biopsy. Our study identified novel proteins found in the blood which may identify fibrosis without the need for a liver biopsy.


Asunto(s)
Proteínas ADAMTS/análisis , Cirrosis Hepática/diagnóstico , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Adulto , Área Bajo la Curva , Biomarcadores/análisis , Biopsia/métodos , Biopsia/estadística & datos numéricos , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Humanos , Cirrosis Hepática/sangre , Cirrosis Hepática/patología , Modelos Logísticos , Masculino , Massachusetts , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/patología , Estudios Prospectivos , Curva ROC
5.
Circulation ; 137(12): 1270-1277, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29222138

RESUMEN

BACKGROUND: Emerging proteomic technologies using novel affinity-based reagents allow for efficient multiplexing with high-sample throughput. To identify early biomarkers of myocardial injury, we recently applied an aptamer-based proteomic profiling platform that measures 1129 proteins to samples from patients undergoing septal alcohol ablation for hypertrophic cardiomyopathy, a human model of planned myocardial injury. Here, we examined the scalability of this approach using a markedly expanded platform to study a far broader range of human proteins in the context of myocardial injury. METHODS: We applied a highly multiplexed, expanded proteomic technique that uses single-stranded DNA aptamers to assay 4783 human proteins (4137 distinct human gene targets) to derivation and validation cohorts of planned myocardial injury, individuals with spontaneous myocardial infarction, and at-risk controls. RESULTS: We found 376 target proteins that significantly changed in the blood after planned myocardial injury in a derivation cohort (n=20; P<1.05E-05, 1-way repeated measures analysis of variance, Bonferroni threshold). Two hundred forty-seven of these proteins were validated in an independent planned myocardial injury cohort (n=15; P<1.33E-04, 1-way repeated measures analysis of variance); >90% were directionally consistent and reached nominal significance in the validation cohort. Among the validated proteins that were increased within 1 hour after planned myocardial injury, 29 were also elevated in patients with spontaneous myocardial infarction (n=63; P<6.17E-04). Many of the novel markers identified in our study are intracellular proteins not previously identified in the peripheral circulation or have functional roles relevant to myocardial injury. For example, the cardiac LIM protein, cysteine- and glycine-rich protein 3, is thought to mediate cardiac mechanotransduction and stress responses, whereas the mitochondrial ATP synthase F0 subunit component is a vasoactive peptide on its release from cells. Last, we performed aptamer-affinity enrichment coupled with mass spectrometry to technically verify aptamer specificity for a subset of the new biomarkers. CONCLUSIONS: Our results demonstrate the feasibility of large-scale aptamer multiplexing at a level that has not previously been reported and with sample throughput that greatly exceeds other existing proteomic methods. The expanded aptamer-based proteomic platform provides a unique opportunity for biomarker and pathway discovery after myocardial injury.


Asunto(s)
Aptámeros de Nucleótidos , Proteínas Sanguíneas/metabolismo , Cardiomiopatía Hipertrófica/sangre , Miocardio/metabolismo , Proteómica/métodos , Infarto del Miocardio con Elevación del ST/sangre , Técnicas de Ablación , Biomarcadores/sangre , Proteínas Sanguíneas/genética , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/patología , Cardiomiopatía Hipertrófica/cirugía , Estudios de Casos y Controles , Estudios de Factibilidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Miocardio/patología , Valor Predictivo de las Pruebas , Pronóstico , Reproducibilidad de los Resultados , Infarto del Miocardio con Elevación del ST/genética , Infarto del Miocardio con Elevación del ST/patología , Factores de Tiempo
6.
Aging Cell ; 23(6): e14136, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38440820

RESUMEN

The identification of protein targets that exhibit anti-aging clinical potential could inform interventions to lengthen the human health span. Most previous proteomics research has been focused on chronological age instead of longevity. We leveraged two large population-based prospective cohorts with long follow-ups to evaluate the proteomic signature of longevity defined by survival to 90 years of age. Plasma proteomics was measured using a SOMAscan assay in 3067 participants from the Cardiovascular Health Study (discovery cohort) and 4690 participants from the Age Gene/Environment Susceptibility-Reykjavik Study (replication cohort). Logistic regression identified 211 significant proteins in the CHS cohort using a Bonferroni-adjusted threshold, of which 168 were available in the replication cohort and 105 were replicated (corrected p value <0.05). The most significant proteins were GDF-15 and N-terminal pro-BNP in both cohorts. A parsimonious protein-based prediction model was built using 33 proteins selected by LASSO with 10-fold cross-validation and validated using 27 available proteins in the validation cohort. This protein model outperformed a basic model using traditional factors (demographics, height, weight, and smoking) by improving the AUC from 0.658 to 0.748 in the discovery cohort and from 0.755 to 0.802 in the validation cohort. We also found that the associations of 169 out of 211 proteins were partially mediated by physical and/or cognitive function. These findings could contribute to the identification of biomarkers and pathways of aging and potential therapeutic targets to delay aging and age-related diseases.


Asunto(s)
Longevidad , Proteómica , Humanos , Longevidad/fisiología , Proteómica/métodos , Femenino , Masculino , Anciano , Anciano de 80 o más Años , Persona de Mediana Edad , Estudios de Cohortes , Biomarcadores/sangre , Envejecimiento/sangre
7.
Eur J Heart Fail ; 26(1): 87-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37936531

RESUMEN

AIM: To examine the ability of serum proteins in predicting future heart failure (HF) events, including HF with reduced or preserved ejection fraction (HFrEF or HFpEF), in relation to event time, and with or without considering established HF-associated clinical variables. METHODS AND RESULTS: In the prospective population-based Age, Gene/Environment Susceptibility Reykjavik Study (AGES-RS), 440 individuals developed HF after their first visit with a median follow-up of 5.45 years. Among them, 167 were diagnosed with HFrEF and 188 with HFpEF. A least absolute shrinkage and selection operator regression model with non-parametric bootstrap were used to select predictors from an analysis of 4782 serum proteins, and several pre-established clinical parameters linked to HF. A subset of 8-10 distinct or overlapping serum proteins predicted different future HF outcomes, and C-statistics were used to assess discrimination, revealing proteins combined with a C-index of 0.80 for all incident HF, 0.78 and 0.80 for incident HFpEF or HFrEF, respectively. In the AGES-RS, protein panels alone encompassed the risk contained in the clinical information and improved the performance characteristics of prediction models based on N-terminal pro-B-type natriuretic peptide and clinical risk factors. Finally, the protein predictors performed particularly well close to the time of an HF event, an outcome that was replicated in the Cardiovascular Health Study. CONCLUSION: A small number of circulating proteins accurately predicted future HF in the AGES-RS cohort of older adults, and they alone encompass the risk information found in a collection of clinical data. Incident HF events were predicted up to 8 years, with predictor performance significantly improving for events occurring less than 1 year ahead, a finding replicated in an external cohort study.


Asunto(s)
Insuficiencia Cardíaca , Humanos , Anciano , Insuficiencia Cardíaca/diagnóstico , Insuficiencia Cardíaca/epidemiología , Estudios de Cohortes , Volumen Sistólico , Estudios Prospectivos , Proteómica , Proteínas Sanguíneas , Pronóstico
8.
Sci Transl Med ; 16(753): eadn3504, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924431

RESUMEN

Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Clorhidrato de Atomoxetina , Proteómica , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Proteómica/métodos , Apolipoproteína E4/genética , Clorhidrato de Atomoxetina/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Masculino , Anciano , Femenino , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismo
9.
Proc Natl Acad Sci U S A ; 107(8): 3552-7, 2010 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-20133595

RESUMEN

Approximately 3,500 mammalian genes are predicted to be secreted or single-pass transmembrane proteins. The function of the majority of these genes is still unknown, and a number of the encoded proteins might find use as new therapeutic agents themselves or as targets for small molecule or antibody drug development. To analyze the physiological activities of the extracellular proteome, we developed a large-scale, high-throughput protein expression, purification, and screening platform. For this study, the complete human extracellular proteome was analyzed and prioritized based on genome-wide disease association studies to select 529 initial target genes. These genes were cloned into three expression vectors as native sequences and as N-terminal and C-terminal Fc fusions to create an initial collection of 806 purified secreted proteins. To determine its utility, this library was screened in an OCT4-based cellular assay to identify regulators of human embryonic stem-cell self-renewal. We found that the pigment epithelium-derived factor can promote long-term pluripotent growth of human embryonic stem cells without bFGF or TGFbeta/Activin/Nodal ligand supplementation. Our results further indicate that activation of the pigment epithelium-derived factor receptor-Erk1/2 signaling pathway by the pigment epithelium-derived factor is sufficient to maintain the self-renewal of pluripotent human embryonic stem cells. These experiments illustrate the potential for discovering novel biological functions by directly screening protein diversity in cell-based phenotypic or reporter assays.


Asunto(s)
Células Madre Embrionarias/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/metabolismo , Proteoma/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Proteoma/genética , Receptores de Neuropéptido/genética , Receptores de Neuropéptido/metabolismo , Transducción de Señal
10.
Biol Psychiatry Glob Open Sci ; 3(3): 490-499, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37519456

RESUMEN

Background: Plasma amyloid-ß (Aß) (Aß42, Aß40, and Aß42/Aß40), biomarkers of the Alzheimer's form of dementia, are under consideration for clinical use. The associations of these peptides with circulating proteins may identify novel plasma biomarkers of dementia and inform peripheral factors influencing the levels of these peptides. Methods: We analyzed the association of these 3 plasma Aß measures with 4638 circulating proteins among a subset of the participants of the Atherosclerosis Risk in Communities (ARIC) study (midlife: n = 1955; late life: n = 2082), related the Aß-associated proteins with incident dementia in the overall ARIC cohort (midlife: n = 11,069, late life: n = 4110) with external replication in the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study (n = 4973), estimated the proportion of Aß variance explained, and conducted enrichment analyses to characterize the proteins associated with the plasma Aß peptides. Results: At midlife, of the 296 Aß-associated proteins, 8 were associated with incident dementia from midlife and late life in the ARIC study, and NPPB, IBSP, and THBS2 were replicated in the AGES-Reykjavik Study. At late life, of the 34 Aß-associated proteins, none were associated with incident dementia at midlife, and kidney function explained 10%, 12%, and 0.2% of the variance of Aß42, Aß40, and Aß42/Aß40, respectively. Aß42-associated proteins at midlife were found to be enriched in the liver, and those at late life were found to be enriched in the spleen. Conclusions: This study identifies circulating proteins associated with plasma Aß levels and incident dementia and informs peripheral factors associated with plasma Aß levels.

11.
medRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961720

RESUMEN

Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.

12.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986771

RESUMEN

The current demand for early intervention, prevention, and treatment of late onset Alzheimer's disease (LOAD) warrants deeper understanding of the underlying molecular processes which could contribute to biomarker and drug target discovery. Utilizing high-throughput proteomic measurements in serum from a prospective population-based cohort of older adults (n=5,294), we identified 303 unique proteins associated with incident LOAD (median follow-up 12.8 years). Over 40% of these proteins were associated with LOAD independently of APOE-ε4 carrier status. These proteins were implicated in neuronal processes and overlapped with protein signatures of LOAD in brain and cerebrospinal fluid. We found 17 proteins which LOAD-association was strongly dependent on APOE-ε4 carrier status. Most of them showed consistent associations with LOAD in cerebrospinal fluid and a third had brain-specific gene expression. Remarkably, four proteins in this group (TBCA, ARL2, S100A13 and IRF6) were downregulated by APOE-ε4 yet upregulated as a consequence of LOAD as determined in a bi-directional Mendelian randomization analysis, reflecting a potential response to the disease onset. Accordingly, the direct association of these proteins to LOAD was reversed upon APOE-ε4 genotype adjustment, a finding which we replicate in an external cohort (n=719). Our findings provide an insight into the dysregulated pathways that may lead to the development and early detection of LOAD, including those both independent and dependent on APOE-ε4. Importantly, many of the LOAD-associated proteins we find in the circulation have been found to be expressed - and have a direct link with AD - in brain tissue. Thus, the proteins identified here, and their upstream modulating pathways, provide a new source of circulating biomarker and therapeutic target candidates for LOAD.

13.
Nat Commun ; 14(1): 2533, 2023 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-37137910

RESUMEN

We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.


Asunto(s)
Diabetes Mellitus Tipo 2 , Islotes Pancreáticos , Ratones , Animales , Masculino , Diabetes Mellitus Tipo 2/metabolismo , Glucemia/metabolismo , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Lípidos , Biomarcadores/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
14.
Commun Biol ; 6(1): 1117, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923804

RESUMEN

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Persona de Mediana Edad , Humanos , Anciano , Cognición , Neuronas , Biomarcadores
15.
Nat Commun ; 13(1): 7121, 2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36402758

RESUMEN

Type 2 diabetes (T2D) has a heterogeneous etiology influencing its progression, treatment, and complications. A data driven cluster analysis in European individuals with T2D previously identified four subtypes: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild obesity-related (MOD), and mild age-related (MARD) diabetes. Here, the clustering approach was applied to individuals with T2D from the Qatar Biobank and validated in an independent set. Cluster-specific signatures of circulating metabolites and proteins were established, revealing subtype-specific molecular mechanisms, including activation of the complement system with features of autoimmune diabetes and reduced 1,5-anhydroglucitol in SIDD, impaired insulin signaling in SIRD, and elevated leptin and fatty acid binding protein levels in MOD. The MARD cluster was the healthiest with metabolomic and proteomic profiles most similar to the controls. We have translated the T2D subtypes to an Arab population and identified distinct molecular signatures to further our understanding of the etiology of these subtypes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Proteómica , Árabes , Insulina
16.
Nat Commun ; 13(1): 480, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35078996

RESUMEN

With the growing number of genetic association studies, the genotype-phenotype atlas has become increasingly more complex, yet the functional consequences of most disease associated alleles is not understood. The measurement of protein level variation in solid tissues and biofluids integrated with genetic variants offers a path to deeper functional insights. Here we present a large-scale proteogenomic study in 5,368 individuals, revealing 4,035 independent associations between genetic variants and 2,091 serum proteins, of which 36% are previously unreported. The majority of both cis- and trans-acting genetic signals are unique for a single protein, although our results also highlight numerous highly pleiotropic genetic effects on protein levels and demonstrate that a protein's genetic association profile reflects certain characteristics of the protein, including its location in protein networks, tissue specificity and intolerance to loss of function mutations. Integrating protein measurements with deep phenotyping of the cohort, we observe substantial enrichment of phenotype associations for serum proteins regulated by established GWAS loci, and offer new insights into the interplay between genetics, serum protein levels and complex disease.


Asunto(s)
Proteínas Sanguíneas/genética , Enfermedad/genética , Predisposición Genética a la Enfermedad , Genoma Humano , Estudio de Asociación del Genoma Completo/métodos , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Enfermedad/clasificación , Femenino , Humanos , Islandia , Masculino
17.
Nat Commun ; 13(1): 481, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079000

RESUMEN

Circulating proteins can be used to diagnose and predict disease-related outcomes. A deep serum proteome survey recently revealed close associations between serum protein networks and common disease. In the current study, 54,469 low-frequency and common exome-array variants were compared to 4782 protein measurements in the serum of 5343 individuals from the AGES Reykjavik cohort. This analysis identifies a large number of serum proteins with genetic signatures overlapping those of many diseases. More specifically, using a study-wide significance threshold, we find that 2021 independent exome array variants are associated with serum levels of 1942 proteins. These variants reside in genetic loci shared by hundreds of complex disease traits, highlighting serum proteins' emerging role as biomarkers and potential causative agents of a wide range of diseases.


Asunto(s)
Proteínas Sanguíneas/genética , Enfermedad/genética , Exoma/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Proteoma/metabolismo , Anciano , Enfermedad/clasificación , Femenino , Humanos , Islandia , Masculino
18.
Nat Commun ; 13(1): 3401, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697682

RESUMEN

Age-related macular degeneration (AMD) is one of the most common causes of visual impairment in the elderly, with a complex and still poorly understood etiology. Whole-genome association studies have discovered 34 genomic regions associated with AMD. However, the genes and cognate proteins that mediate the risk, are largely unknown. In the current study, we integrate levels of 4782 human serum proteins with all genetic risk loci for AMD in a large population-based study of the elderly, revealing many proteins and pathways linked to the disease. Serum proteins are also found to reflect AMD severity independent of genetics and predict progression from early to advanced AMD after five years in this population. A two-sample Mendelian randomization study identifies several proteins that are causally related to the disease and are directionally consistent with the observational estimates. In this work, we present a robust and unique framework for elucidating the pathobiology of AMD.


Asunto(s)
Degeneración Macular , Proteogenómica , Anciano , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Degeneración Macular/genética , Degeneración Macular/metabolismo , Análisis de la Aleatorización Mendeliana , Factores de Riesgo
19.
Trends Mol Med ; 27(1): 20-30, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32988739

RESUMEN

Recent advances in protein profiling technology has facilitated simultaneous measurement of thousands of proteins in large population studies, exposing the depth and complexity of the plasma and serum proteomes. This revealed that proteins in circulation were organized into regulatory modules under genetic control and closely associated with current and future common diseases. Unlike networks in solid tissues, serum protein networks comprise members synthesized across different tissues of the body. Genetic analysis reveals that this cross-tissue regulation of the serum proteome participates in systemic homeostasis and mirrors the global disease state of individuals. Here, we discuss how application of this information in routine clinical evaluations may transform the future practice of medicine.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Medicina de Precisión , Proteoma , Proteómica , Susceptibilidad a Enfermedades , Genómica/métodos , Humanos , Especificidad de Órganos , Medicina de Precisión/métodos , Proteómica/métodos
20.
Obes Sci Pract ; 7(2): 239-243, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33841894

RESUMEN

OBJECTIVE: As severity of outcome in COVID-19 is disproportionately higher among individuals with obesity, smokers, patients with hypertension, kidney disease, chronic pulmonary disease, coronary heart disease (CHD), and/or type 2 diabetes (T2D), serum levels of ACE2, the cellular entry point for the coronavirus SARS-CoV-2, were examined in these high-risk groups. METHODS: Associations of ACE2 levels to smokers and patients with hypertension, T2D, obesity, CHD, or COPD were investigated in a single center population-based study of 5457 Icelanders from the Age, Gene/Environment Susceptibility Reykjavík Study (AGES-RS) of the elderly (mean age 75 ± 6 years), using multiple linear regression analysis. RESULTS: Serum levels of ACE2 were higher in smokers and individuals with T2D and/or obesity while they were unaffected in the other patient groups. CONCLUSION: ACE2 levels are higher in some patient groups with comorbidities linked to COVID-19 including obesity and T2D and as such may have an emerging role as a circulating biomarker for severity of outcome in the disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA