Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 290(20): 12614-29, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25792743

RESUMEN

Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.


Asunto(s)
Inhibidores Enzimáticos/química , Glicósido Hidrolasas/química , Hordeum/enzimología , Proteínas de Plantas/química , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/metabolismo , Germinación/fisiología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Hordeum/genética , Mutagénesis Sitio-Dirigida , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/química , Almidón/genética , Almidón/metabolismo , Relación Estructura-Actividad
2.
Int J Biochem Cell Biol ; 55: 311-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25261786

RESUMEN

Proton-coupled oligopeptide transporters (POTs) utilize an electrochemical proton gradient to accumulate peptides in the cytoplasm. Changing the highly conserved active-site Lys117 in the Escherichia coli POT YjdL to glutamine resulted in loss of ligand affinity as well as inability to distinguish between a dipeptide ligand and the corresponding dipeptide amide. The radically changed pH(Bulk) profiles of Lys117Gln and Lys117Arg mutants indicate an important role of Lys117 in facilitating protonation of the transporter; a notion that is supported by the close proximity of Lys117 to the conserved ExxERFxYY POT motif previously shown to be involved in proton translocation. These results point toward a novel dual role of Lys117 in direct or indirect interaction with both proton and peptide.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Oligopéptidos/metabolismo , Protones , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , Transporte Biológico/genética , Membrana Celular/metabolismo , Secuencia Conservada/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Glutamina/química , Glutamina/genética , Glutamina/metabolismo , Cinética , Lisina/química , Lisina/genética , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación Missense , Oligopéptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
FEBS Lett ; 588(4): 560-5, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24440353

RESUMEN

Proton-coupled oligopeptide transporters (POTs) are secondary active transporters that facilitate di- and tripeptide uptake by coupling it to an inward directed proton electrochemical gradient. Here the substrate specificities of Escherichia coli POTs YdgR, YhiP and YjdL were investigated by means of a label free transport assay using the hydrophilic pH sensitive dye pyranine and POT overexpressing E. coli cells. The results confirm and extend the functional knowledge on E. coli POTs. In contrast to previous assumptions, alanine and trialanine appears to be substrates of YjdL, albeit poor compared to dipeptides. Similarly tetraalanine apparently is a substrate of both YdgR and YhiP.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli , Proteínas de Transporte de Membrana/metabolismo , Sustitución de Aminoácidos , Dipéptidos/química , Dipéptidos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Transporte de Proteínas , Especificidad por Sustrato
4.
Protein Pept Lett ; 19(3): 282-7, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21933132

RESUMEN

Proton-dependent oligopeptide transporters (POTs) are secondary active symporters that utilize the proton gradient to drive the inward translocation of di- and tripeptides. We have mutated two highly conserved membraneembedded glutamate residues (Glu20 and Glu388) in the E. coli POT YjdL to probe their possible functional roles, in particular if they were involved/implicated in recognition of the substrate N-terminus. The mutants (Glu20Asp, Glu20Gln, Glu388Asp, and Glu388Gln) were tested for substrate uptake, which indicated that both the negative charge and the side chain length were important for function. The IC50 values of dipeptides with lack of or varying N-terminus (Ac-Lys, Gly- Lys, ß-Ala-Lys, and 4-GABA-Lys), showed that Gly-Lys and ß-Ala-Lys ranged between ~0.1 to ~1.0 mM for wild type and Glu20 mutants. However, for Glu388Gln the IC50 increased to ~2.0 and > 10 mM for Gly-Lys and ß-Ala-Lys, respectively, suggesting that Glu388, and not Glu20, is able to sense the position of the N-terminus and important for the interaction. Furthermore, uptake as a function of pH showed that the optimum at around pH 6.5 for wild type YjdL shifted to 7.0-7.5 for the Glu388Asp/Gln mutants while the Glu20Asp retained the wild type optimum. Uptake by the Glu20Gln on the other hand was completely unaffected by the bulk pH in the range tested, which indicated a possible role of Glu20 in proton translocation.


Asunto(s)
Membrana Celular/metabolismo , Secuencia Conservada , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli , Ácido Glutámico , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/metabolismo , Protones , Sitios de Unión , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Proteínas de Transporte de Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Péptidos/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA