Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Genet ; 21(3): 151-170, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31780816

RESUMEN

Cell-free biology is the activation of biological processes without the use of intact living cells. It has been used for more than 50 years across the life sciences as a foundational research tool, but a recent technical renaissance has facilitated high-yielding (grams of protein per litre), cell-free gene expression systems from model bacteria, the development of cell-free platforms from non-model organisms and multiplexed strategies for rapidly assessing biological design. These advances provide exciting opportunities to profoundly transform synthetic biology by enabling new approaches to the model-driven design of synthetic gene networks, the fast and portable sensing of compounds, on-demand biomanufacturing, building cells from the bottom up, and next-generation educational kits.


Asunto(s)
Sistema Libre de Células , Expresión Génica , Sondas Moleculares
2.
Nat Chem Biol ; 18(9): 990-998, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35836020

RESUMEN

RNA-based macromolecular machines, such as the ribosome, have functional parts reliant on structural interactions spanning sequence-distant regions. These features limit evolutionary exploration of mutant libraries and confound three-dimensional structure-guided design. To address these challenges, we describe Evolink (evolution and linkage), a method that enables high-throughput evolution of sequence-distant regions in large macromolecular machines, and library design guided by computational RNA modeling to enable exploration of structurally stable designs. Using Evolink, we evolved a tethered ribosome with a 58% increased activity in orthogonal protein translation and a 97% improvement in doubling times in SQ171 cells compared to a previously developed tethered ribosome, and reveal new permissible sequences in a pair of ribosomal helices with previously explored biological function. The Evolink approach may enable enhanced engineering of macromolecular machines for new and improved functions for synthetic biology.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas , ARN/metabolismo , Ribosomas/metabolismo , Biología Sintética/métodos
3.
Nucleic Acids Res ; 50(6): 3523-3534, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35258601

RESUMEN

RNA-guided nucleases from CRISPR-Cas systems expand opportunities for precise, targeted genome modification. Endogenous CRISPR-Cas systems in many prokaryotes are attractive to circumvent expression, functionality, and unintended activity hurdles posed by heterologous CRISPR-Cas effectors. However, each CRISPR-Cas system recognizes a unique set of protospacer adjacent motifs (PAMs), which requires identification by extensive screening of randomized DNA libraries. This challenge hinders development of endogenous CRISPR-Cas systems, especially those based on multi-protein effectors and in organisms that are slow-growing or have transformation idiosyncrasies. To address this challenge, we present Spacer2PAM, an easy-to-use, easy-to-interpret R package built to predict and guide experimental determination of functional PAM sequences for any CRISPR-Cas system given its corresponding CRISPR array as input. Spacer2PAM can be used in a 'Quick' method to generate a single PAM prediction or in a 'Comprehensive' method to inform targeted PAM libraries small enough to screen in difficult to transform organisms. We demonstrate Spacer2PAM by predicting PAM sequences for industrially relevant organisms and experimentally identifying seven PAM sequences that mediate interference from the Spacer2PAM-informed PAM library for the type I-B CRISPR-Cas system from Clostridium autoethanogenum. We anticipate that Spacer2PAM will facilitate the use of endogenous CRISPR-Cas systems for industrial biotechnology and synthetic biology.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Sistemas CRISPR-Cas/genética , Clostridium/genética , Biblioteca de Genes , Motivos de Nucleótidos
4.
Nucleic Acids Res ; 50(22): 13143-13154, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36484094

RESUMEN

Understanding how modifications to the ribosome affect function has implications for studying ribosome biogenesis, building minimal cells, and repurposing ribosomes for synthetic biology. However, efforts to design sequence-modified ribosomes have been limited because point mutations in the ribosomal RNA (rRNA), especially in the catalytic active site (peptidyl transferase center; PTC), are often functionally detrimental. Moreover, methods for directed evolution of rRNA are constrained by practical considerations (e.g. library size). Here, to address these limitations, we developed a computational rRNA design approach for screening guided libraries of mutant ribosomes. Our method includes in silico library design and selection using a Rosetta stepwise Monte Carlo method (SWM), library construction and in vitro testing of combined ribosomal assembly and translation activity, and functional characterization in vivo. As a model, we apply our method to making modified ribosomes with mutant PTCs. We engineer ribosomes with as many as 30 mutations in their PTCs, highlighting previously unidentified epistatic interactions, and show that SWM helps identify sequences with beneficial phenotypes as compared to random library sequences. We further demonstrate that some variants improve cell growth in vivo, relative to wild type ribosomes. We anticipate that SWM design and selection may serve as a powerful tool for rRNA engineering.


Asunto(s)
Peptidil Transferasas , Ribosomas , Dominio Catalítico , Ribosomas/metabolismo , ARN Ribosómico/metabolismo , Peptidil Transferasas/metabolismo , Mutación , Proteínas Ribosómicas/genética , ARN Ribosómico 23S/metabolismo
5.
Glycobiology ; 33(5): 358-363, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-36882003

RESUMEN

Lectins are important biological tools for binding glycans, but recombinant protein expression poses challenges for some lectin classes, limiting the pace of discovery and characterization. To discover and engineer lectins with new functions, workflows amenable to rapid expression and subsequent characterization are needed. Here, we present bacterial cell-free expression as a means for efficient, small-scale expression of multivalent, disulfide bond-rich, rhamnose-binding lectins. Furthermore, we demonstrate that the cell-free expressed lectins can be directly coupled with bio-layer interferometry analysis, either in solution or immobilized on the sensor, to measure interaction with carbohydrate ligands without purification. This workflow enables the determination of lectin substrate specificity and estimation of binding affinity. Overall, we believe that this method will enable high-throughput expression, screening, and characterization of new and engineered multivalent lectins for applications in synthetic glycobiology.


Asunto(s)
Lectinas , Ramnosa , Lectinas/química , Carbohidratos/química , Proteínas Recombinantes/genética , Interferometría/métodos
6.
Metab Eng ; 76: 133-145, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36724840

RESUMEN

Cell-free systems are useful tools for prototyping metabolic pathways and optimizing the production of various bioproducts. Mechanistically-based kinetic models are uniquely suited to analyze dynamic experimental data collected from cell-free systems and provide vital qualitative insight. However, to date, dynamic kinetic models have not been applied with rigorous biological constraints or trained on adequate experimental data to the degree that they would give high confidence in predictions and broadly demonstrate the potential for widespread use of such kinetic models. In this work, we construct a large-scale dynamic model of cell-free metabolism with the goal of understanding and optimizing butanol production in a cell-free system. Using a combination of parameterization methods, the resultant model captures experimental metabolite measurements across two experimental conditions for nine metabolites at timepoints between 0 and 24 h. We present analysis of the model predictions, provide recommendations for butanol optimization, and identify the aldehyde/alcohol dehydrogenase as the primary bottleneck in butanol production. Sensitivity analysis further reveals the extent to which various parameters are constrained, and our approach for probing valid parameter ranges can be applied to other modeling efforts.


Asunto(s)
1-Butanol , Butanoles , Butanoles/metabolismo , Etanol/metabolismo , Modelos Biológicos , Cinética
7.
Metab Eng ; 80: 241-253, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37890611

RESUMEN

Building and optimizing biosynthetic pathways in engineered cells holds promise to address societal needs in energy, materials, and medicine, but it is often time-consuming. Cell-free synthetic biology has emerged as a powerful tool to accelerate design-build-test-learn cycles for pathway engineering with increased tolerance to toxic compounds. However, most cell-free pathway prototyping to date has been performed in extracts from wildtype cells which often do not have sufficient flux towards the pathways of interest, which can be enhanced by engineering. Here, to address this gap, we create a set of engineered Escherichia coli and Saccharomyces cerevisiae strains rewired via CRISPR-dCas9 to achieve high-flux toward key metabolic precursors; namely, acetyl-CoA, shikimate, triose-phosphate, oxaloacetate, α-ketoglutarate, and glucose-6-phosphate. Cell-free extracts generated from these strains are used for targeted enzyme screening in vitro. As model systems, we assess in vivo and in vitro production of triacetic acid lactone from acetyl-CoA and muconic acid from the shikimate pathway. The need for these platforms is exemplified by the fact that muconic acid cannot be detected in wildtype extracts provided with the same biosynthetic enzymes. We also perform metabolomic comparison to understand biochemical differences between the cellular and cell-free muconic acid synthesis systems (E. coli and S. cerevisiae cells and cell extracts with and without metabolic rewiring). While any given pathway has different interfaces with metabolism, we anticipate that this set of pre-optimized, flux enhanced cell extracts will enable prototyping efforts for new biosynthetic pathways and the discovery of biochemical functions of enzymes.


Asunto(s)
Ingeniería Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilcoenzima A/metabolismo , Extractos Celulares , Escherichia coli/metabolismo
8.
Biotechnol Bioprocess Eng ; : 1-17, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778039

RESUMEN

A wide variety of peptidomimetics (peptide analogs) possessing innovative biological functions have been brought forth as therapeutic candidates through cell-free protein synthesis (CFPS) systems. A key feature of these peptidomimetic drugs is the use of non-canonical amino acid building blocks with diverse biochemical properties that expand functional diversity. Here, we summarize recent technologies leveraging CFPS platforms to expand the reach of peptidomimetics drugs. We also offer perspectives on engineering the translational machinery that may open new opportunities for expanding genetically encoded chemistry to transform drug discovery practice beyond traditional boundaries.

9.
J Bacteriol ; 204(9): e0057621, 2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-35575582

RESUMEN

Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here, we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is critical for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy, we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and system-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis. IMPORTANCE MCPs are unique, genetically encoded organelles used by many bacteria to survive in resource-limited environments. There is significant interest in understanding the biogenesis and function of these organelles, both as potential antibiotic targets in enteric pathogens and also as useful tools for overcoming metabolic engineering bottlenecks. However, the mechanism by which these organelles are formed natively is still not completely understood. Here, we provide evidence of a potential mechanism in S. enterica by which a single protein, PduB, links the MCP shell and metabolic core. This finding is critical for those seeking to disrupt MCPs during pathogenic infections or for those seeking to harness MCPs as nanobioreactors in industrial settings.


Asunto(s)
Salmonella enterica , Antibacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Lisina/metabolismo , Orgánulos/metabolismo , Propilenglicol/metabolismo , Glicoles de Propileno , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella typhimurium/metabolismo
10.
Anal Chem ; 94(23): 8105-8109, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35652578

RESUMEN

New platforms for the rapid and sensitive detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern are urgently needed. Here we report the development of a nanomechanical sensor based on the deflection of a microcantilever capable of detecting the SARS-CoV-2 spike (S) glycoprotein antigen using computationally designed multivalent minibinders immobilized on a microcantilever surface. The sensor exhibits rapid (<5 min) detection of the target antigens down to concentrations of 0.05 ng/mL (362 fM) and is more than an order of magnitude more sensitive than an antibody-based cantilever sensor. Validation of the sensor with clinical samples from 33 patients, including 9 patients infected with the Omicron (BA.1) variant observed detection of antigen from nasopharyngeal swabs with cycle threshold (Ct) values as high as 39, suggesting a limit of detection similar to that of the quantitative reverse transcription polymerase chain reaction (RT-qPCR). Our findings demonstrate the use of minibinders and nanomechanical sensors for the rapid and sensitive detection of SARS-CoV-2 and potentially other disease markers.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Humanos , SARS-CoV-2/genética , Sensibilidad y Especificidad
11.
Nat Chem Biol ; 16(8): 912-919, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32541965

RESUMEN

The design and optimization of biosynthetic pathways for industrially relevant, non-model organisms is challenging due to transformation idiosyncrasies, reduced numbers of validated genetic parts and a lack of high-throughput workflows. Here we describe a platform for in vitro prototyping and rapid optimization of biosynthetic enzymes (iPROBE) to accelerate this process. In iPROBE, cell lysates are enriched with biosynthetic enzymes by cell-free protein synthesis and then metabolic pathways are assembled in a mix-and-match fashion to assess pathway performance. We demonstrate iPROBE by screening 54 different cell-free pathways for 3-hydroxybutyrate production and optimizing a six-step butanol pathway across 205 permutations using data-driven design. Observing a strong correlation (r = 0.79) between cell-free and cellular performance, we then scaled up our highest-performing pathway, which improved in vivo 3-HB production in Clostridium by 20-fold to 14.63 ± 0.48 g l-1. We expect iPROBE to accelerate design-build-test cycles for industrial biotechnology.


Asunto(s)
Vías Biosintéticas/fisiología , Ingeniería Metabólica/métodos , Biología Sintética/métodos , Vías Biosintéticas/efectos de los fármacos , Biotecnología/métodos , Sistema Libre de Células/metabolismo , Redes y Vías Metabólicas/fisiología , Biosíntesis de Proteínas/genética , Biosíntesis de Proteínas/fisiología
12.
Nucleic Acids Res ; 48(3): 1068-1083, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31777928

RESUMEN

Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.


Asunto(s)
Bioingeniería , Biosíntesis de Proteínas , Aminoácidos/metabolismo , ARN de Transferencia/biosíntesis , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/fisiología , Ribosomas/química , Ribosomas/metabolismo
13.
Nucleic Acids Res ; 48(5): 2777-2789, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32009164

RESUMEN

The synthetic capability of the Escherichia coli ribosome has attracted efforts to repurpose it for novel functions, such as the synthesis of polymers containing non-natural building blocks. However, efforts to repurpose ribosomes are limited by the lack of complete peptidyl transferase center (PTC) active site mutational analyses to inform design. To address this limitation, we leverage an in vitro ribosome synthesis platform to build and test every possible single nucleotide mutation within the PTC-ring, A-loop and P-loop, 180 total point mutations. These mutant ribosomes were characterized by assessing bulk protein synthesis kinetics, readthrough, assembly, and structure mapping. Despite the highly-conserved nature of the PTC, we found that >85% of the PTC nucleotides possess mutational flexibility. Our work represents a comprehensive single-point mutant characterization and mapping of the 70S ribosome's active site. We anticipate that it will facilitate structure-function relationships within the ribosome and make possible new synthetic biology applications.


Asunto(s)
Dominio Catalítico , Escherichia coli/metabolismo , Mutación/genética , Ribosomas/química , Ribosomas/genética , Codón/genética , Modelos Moleculares , Peptidil Transferasas/metabolismo , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Ribosómico/metabolismo
14.
J Ind Microbiol Biotechnol ; 49(2)2022 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-35218187

RESUMEN

Microbial production of fuels, chemicals, and materials has the potential to reduce greenhouse gas emissions and contribute to a sustainable bioeconomy. While synthetic biology allows readjusting of native metabolic pathways for the synthesis of desired products, often these native pathways do not support maximum efficiency and are affected by complex regulatory mechanisms. A synthetic or engineered pathway that allows modular synthesis of versatile bioproducts with minimal enzyme requirement and regulation while achieving high carbon and energy efficiency could be an alternative solution to address these issues. The reverse ß-oxidation (rBOX) pathways enable iterative non-decarboxylative elongation of carbon molecules of varying chain lengths and functional groups with only four core enzymes and no ATP requirement. Here, we describe recent developments in rBOX pathway engineering to produce alcohols and carboxylic acids with diverse functional groups, along with other commercially important molecules such as polyketides. We discuss the application of rBOX beyond the pathway itself by its interfacing with various carbon-utilization pathways and deployment in different organisms, which allows feedstock diversification from sugars to glycerol, carbon dioxide, methane, and other substrates.


Asunto(s)
Ácidos Carboxílicos , Biología Sintética , Alcoholes/metabolismo , Ácidos Carboxílicos/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas , Oxidación-Reducción
15.
Biochemistry ; 60(3): 161-169, 2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33426883

RESUMEN

Efforts to expand the scope of ribosome-mediated polymerization to incorporate noncanonical amino acids (ncAAs) into peptides and proteins hold promise for creating new classes of enzymes, therapeutics, and materials. Recently, the integrated synthesis, assembly, and translation (iSAT) system was established to construct functional ribosomes in cell-free systems. However, the iSAT system has not been shown to be compatible with genetic code expansion. Here, to address this gap, we develop an iSAT platform capable of manufacturing pure proteins with site-specifically incorporated ncAAs. We first establish an iSAT platform based on extracts from genomically recoded Escherichia coli lacking release factor 1 (RF-1). This permits complete reassignment of the amber codon translation function. Next, we optimize orthogonal translation system components to demonstrate the benefits of genomic RF-1 deletion on incorporation of ncAAs into proteins. Using our optimized platform, we demonstrate high-level, multi-site incorporation of p-acetyl-phenylalanine (pAcF) and p-azido-phenylalanine into superfolder green fluorescent protein (sfGFP). Mass spectrometry analysis confirms the high accuracy of incorporation for pAcF at one, two, and five amber sites in sfGFP. The iSAT system updated for ncAA incorporation sets the stage for investigating ribosomal mutations to better understand the fundamental basis of protein synthesis, manufacturing proteins with new properties, and engineering ribosomes for novel polymerization chemistries.


Asunto(s)
Codón de Terminación , Escherichia coli/química , Proteínas Fluorescentes Verdes/biosíntesis , Biosíntesis de Proteínas , Ribosomas/química , Aminoácidos , Aminoacil-ARNt Sintetasas/química , Sistema Libre de Células/química
16.
Chembiochem ; 22(1): 84-91, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-32783358

RESUMEN

Natural products and secondary metabolites comprise an indispensable resource from living organisms that have transformed areas of medicine, agriculture, and biotechnology. Recent advances in high-throughput DNA sequencing and computational analysis suggest that the vast majority of natural products remain undiscovered. To accelerate the natural product discovery pipeline, cell-free metabolic engineering approaches used to develop robust catalytic networks are being repurposed to access new chemical scaffolds, and new enzymes capable of performing diverse chemistries. Such enzymes could serve as flexible biocatalytic tools to further expand the unique chemical space of natural products and secondary metabolites, and provide a more sustainable route to manufacture these molecules. Herein, we highlight select examples of natural product biosynthesis using cell-free systems and propose how cell-free technologies could facilitate our ability to access and modify these structures to transform synthetic and chemical biology.


Asunto(s)
Productos Biológicos/metabolismo , Productos Biológicos/química , Secuenciación de Nucleótidos de Alto Rendimiento , Ingeniería Metabólica , Estructura Molecular
17.
Nature ; 524(7563): 119-24, 2015 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-26222032

RESUMEN

The ribosome is a ribonucleoprotein machine responsible for protein synthesis. In all kingdoms of life it is composed of two subunits, each built on its own ribosomal RNA (rRNA) scaffold. The independent but coordinated functions of the subunits, including their ability to associate at initiation, rotate during elongation, and dissociate after protein release, are an established model of protein synthesis. Furthermore, the bipartite nature of the ribosome is presumed to be essential for biogenesis, since dedicated assembly factors keep immature ribosomal subunits apart and prevent them from translation initiation. Free exchange of the subunits limits the development of specialized orthogonal genetic systems that could be evolved for novel functions without interfering with native translation. Here we show that ribosomes with tethered and thus inseparable subunits (termed Ribo-T) are capable of successfully carrying out protein synthesis. By engineering a hybrid rRNA composed of both small and large subunit rRNA sequences, we produced a functional ribosome in which the subunits are covalently linked into a single entity by short RNA linkers. Notably, Ribo-T was not only functional in vitro, but was also able to support the growth of Escherichia coli cells even in the absence of wild-type ribosomes. We used Ribo-T to create the first fully orthogonal ribosome-messenger RNA system, and demonstrate its evolvability by selecting otherwise dominantly lethal rRNA mutations in the peptidyl transferase centre that facilitate the translation of a problematic protein sequence. Ribo-T can be used for exploring poorly understood functions of the ribosome, enabling orthogonal genetic systems, and engineering ribosomes with new functions.


Asunto(s)
Bioingeniería/métodos , Biosíntesis de Proteínas , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Escherichia coli/citología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Modelos Moleculares , Conformación Molecular , Mutación/genética , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/metabolismo , Biosíntesis de Proteínas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 23S/genética , ARN Ribosómico 23S/metabolismo , Ribosomas/genética
18.
Anal Chem ; 92(2): 1963-1971, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31854989

RESUMEN

High-throughput quantification of the post-translational modification of many individual protein samples is challenging with current label-based methods. This paper demonstrates an efficient method that addresses this gap by combining Escherichia coli-based cell-free protein synthesis (CFPS) and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) to analyze intact proteins. This high-throughput approach begins with polyhistidine-tagged protein substrates expressed from linear DNA templates by CFPS. Here, we synthesized an 87-member library of the E. coli Immunity Protein 7 (Im7) containing an acceptor sequence optimized for glycosylation by the Actinobacillus pleuropneumoniae N-glycosyltransferase (NGT) at every possible position along the protein backbone. These protein substrates were individually treated with NGT and then selectively immobilized to self-assembled monolayers presenting nickel-nitrilotriacetic acid (Ni-NTA) complexes before final analysis by SAMDI-MS to quantify the conversion of substrate to glycoprotein. This method offers new opportunities for rapid synthesis and quantitative evaluation of intact glycoproteins.


Asunto(s)
Proteínas Portadoras/análisis , Proteínas de Escherichia coli/análisis , Glicoproteínas/análisis , Ensayos Analíticos de Alto Rendimiento/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Actinobacillus pleuropneumoniae/enzimología , Proteínas Portadoras/síntesis química , Proteínas Portadoras/genética , Escherichia coli/química , Proteínas de Escherichia coli/síntesis química , Proteínas de Escherichia coli/genética , Glicoproteínas/síntesis química , Glicoproteínas/genética , Glicosilación , Glicosiltransferasas/química , Mutación , Biblioteca de Péptidos , Prueba de Estudio Conceptual , Proteínas Recombinantes/análisis , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/genética
19.
Metab Eng ; 61: 251-260, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32464283

RESUMEN

Metabolic engineering of microorganisms to produce sustainable chemicals has emerged as an important part of the global bioeconomy. Unfortunately, efforts to design and engineer microbial cell factories are challenging because design-build-test cycles, iterations of re-engineering organisms to test and optimize new sets of enzymes, are slow. To alleviate this challenge, we demonstrate a cell-free approach termed in vitro Prototyping and Rapid Optimization of Biosynthetic Enzymes (or iPROBE). In iPROBE, a large number of pathway combinations can be rapidly built and optimized. The key idea is to use cell-free protein synthesis (CFPS) to manufacture pathway enzymes in separate reactions that are then mixed to modularly assemble multiple, distinct biosynthetic pathways. As a model, we apply our approach to the 9-step heterologous enzyme pathway to limonene in extracts from Escherichia coli. In iterative cycles of design, we studied the impact of 54 enzyme homologs, multiple enzyme levels, and cofactor concentrations on pathway performance. In total, we screened over 150 unique sets of enzymes in 580 unique pathway conditions to increase limonene production in 24 h from 0.2 to 4.5 mM (23-610 mg/L). Finally, to demonstrate the modularity of this pathway, we also synthesized the biofuel precursors pinene and bisabolene. We anticipate that iPROBE will accelerate design-build-test cycles for metabolic engineering, enabling data-driven multiplexed cell-free methods for testing large combinations of biosynthetic enzymes to inform cellular design.


Asunto(s)
Vías Biosintéticas , Limoneno/metabolismo , Ingeniería Metabólica , Biosíntesis de Proteínas , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo
20.
Metab Eng ; 61: 89-95, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32502620

RESUMEN

Styrene is an important petroleum-derived molecule that is polymerized to make versatile plastics, including disposable silverware and foamed packaging materials. Finding more sustainable methods, such as biosynthesis, for producing styrene is essential due to the increasing severity of climate change as well as the limited supply of fossil fuels. Recent metabolic engineering efforts have enabled the biological production of styrene in Escherichia coli, but styrene toxicity and volatility limit biosynthesis in cells. To address these limitations, we have developed a cell-free styrene biosynthesis platform. The cell-free system provides an open reaction environment without cell viability constraints, which allows exquisite control over reaction conditions and greater carbon flux toward product formation rather than cell growth. The two biosynthetic enzymes required for styrene production were generated via cell-free protein synthesis and mixed in defined ratios with supplemented L-phenylalanine and buffer. By altering the time, temperature, pH, and enzyme concentrations in the reaction, this approach increased the cell-free titer of styrene from 5.36 ± 0.63 mM to 40.33 ± 1.03 mM, the highest amount achieved using biosynthesis without process modifications and product removal strategies. Cell-free systems offer a complimentary approach to cellular synthesis of small molecules, which can provide particular benefits for producing toxic molecules.


Asunto(s)
Escherichia coli/química , Estireno/síntesis química , Sistema Libre de Células/química , Escherichia coli/metabolismo , Estireno/química , Estireno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA