Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
J Biol Chem ; 299(8): 104803, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37172723

RESUMEN

Interleukin-1ß is one of the most potent inducers of beta cell inflammation in the lead-up to type 1 diabetes. We have previously reported that IL1ß-stimulated pancreatic islets from mice with genetic ablation of stress-induced pseudokinase TRB3(TRB3KO) show attenuated activation kinetics for the MAP3K MLK3 and JNK stress kinases. However, JNK signaling constitutes only a portion of the cytokine-induced inflammatory response. Here we report that TRB3KO islets also show a decrease in amplitude and duration of IL1ß-induced phosphorylation of TAK1 and IKK, kinases that drive the potent NF-κB proinflammatory signaling pathway. We observed that TRB3KO islets display decreased cytokine-induced beta cell death, preceded by a decrease in select downstream NF-κB targets, including iNOS/NOS2 (inducible nitric oxide synthase), a mediator of beta cell dysfunction and death. Thus, loss of TRB3 attenuates both pathways required for a cytokine-inducible, proapoptotic response in beta cells. In order to better understand the molecular basis of TRB3-enhanced, post-receptor IL1ß signaling, we interrogated the TRB3 interactome using coimmunoprecipitation followed by mass spectrometry to identify immunomodulatory protein Flightless homolog 1 (Fli1) as a novel, TRB3-interacting protein. We show that TRB3 binds and disrupts Fli1-dependent sequestration of MyD88, thereby increasing availability of this most proximal adaptor required for IL1ß receptor-dependent signaling. Fli1 sequesters MyD88 in a multiprotein complex resulting in a brake on the assembly of downstream signaling complexes. By interacting with Fli1, we propose that TRB3 lifts the brake on IL1ß signaling to augment the proinflammatory response in beta cells.


Asunto(s)
Proteínas de Ciclo Celular , Interleucina-1beta , Transducción de Señal , Animales , Ratones , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citocinas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal/genética , Inhibidores Enzimáticos/farmacología , Apoptosis/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Activación Transcripcional/genética
2.
Development ; 140(13): 2669-79, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23720049

RESUMEN

Although the liver and ventral pancreas are thought to arise from a common multipotent progenitor pool, it is unclear whether these progenitors of the hepatopancreas system are specified by a common genetic mechanism. Efforts to determine the role of Hnf1b and Wnt signaling in this crucial process have been confounded by a combination of factors, including a narrow time frame for hepatopancreas specification, functional redundancy among Wnt ligands, and pleiotropic defects caused by either severe loss of Wnt signaling or Hnf1b function. Using a novel hypomorphic hnf1ba zebrafish mutant that exhibits pancreas hypoplasia, as observed in HNF1B monogenic diabetes, we show that hnf1ba plays essential roles in regulating ß-cell number and pancreas specification, distinct from its function in regulating pancreas size and liver specification, respectively. By combining Hnf1ba partial loss of function with conditional loss of Wnt signaling, we uncover a crucial developmental window when these pathways synergize to specify the entire ventrally derived hepatopancreas progenitor population. Furthermore, our in vivo genetic studies demonstrate that hnf1ba generates a permissive domain for Wnt signaling activity in the foregut endoderm. Collectively, our findings provide a new model for HNF1B function, yield insight into pancreas and ß-cell development, and suggest a new mechanism for hepatopancreatic specification.


Asunto(s)
Factor Nuclear 1-beta del Hepatocito/metabolismo , Hepatopáncreas/citología , Hepatopáncreas/metabolismo , Células Madre/citología , Células Madre/metabolismo , Proteínas Wnt/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Factor Nuclear 1-beta del Hepatocito/genética , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Pez Cebra , Proteínas de Pez Cebra/genética
3.
J Biol Chem ; 289(43): 29994-30004, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25204656

RESUMEN

Disabling cellular defense mechanisms is essential for induction of apoptosis. We have previously shown that cytokine-mediated activation of the MAP3K MLK3 stabilizes TRB3 protein levels to inhibit AKT and compromise beta cell survival. Here, we show that genetic deletion of TRB3 results in basal activation of AKT, preserves mitochondrial integrity, and confers resistance against cytokine-induced pancreatic beta cell death. Mechanistically, we find that TRB3 stabilizes MLK3, most likely by suppressing AKT-directed phosphorylation, ubiquitination, and proteasomal degradation of MLK3. Accordingly, TRB3(-/-) islets show a decrease in both the amplitude and duration of cytokine-stimulated MLK3 induction and JNK activation. It is well known that JNK signaling is facilitated by a feed forward loop of sequential kinase phosphorylation and is reinforced by a mutual stabilization of the module components. The failure of TRB3(-/-) islets to mount an optimal JNK activation response, coupled with the ability of TRB3 to engage and maintain steady state levels of MLK3, recasts TRB3 as an integral functional component of the JNK module in pancreatic beta cells.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Citocinas/farmacología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Proteínas de Ciclo Celular/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Estabilidad de Enzimas/efectos de los fármacos , Humanos , Insulina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Lisina/metabolismo , Ratones , Mutación/genética , Fosforilación/efectos de los fármacos , Fosfotreonina/metabolismo , Poliubiquitina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ubiquitinación/efectos de los fármacos , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
4.
J Biol Chem ; 288(4): 2428-40, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23172226

RESUMEN

The mixed lineage kinase MLK3 plays a crucial role in compromising mitochondrial integrity and functions as a proapoptotic competence factor in the early stages of cytokine-induced pancreatic ß cell death. In an effort to identify mechanisms that regulate MLK3 activity in ß cells, we discovered that IL-1ß stimulates Lys-63-linked ubiquitination of MLK3 via a conserved, TRAF6-binding peptapeptide motif in the catalytic domain of the kinase. TRAF6-mediated ubiquitination was required for dissociation of inactive monomeric MLK3 from the scaffold protein IB1/JIP1, facilitating the subsequent dimerization, autophosphorylation, and catalytic activation of MLK3. Inability to ubiquitinate MLK3, or the presence of A20, an upstream Lys-63-linked deubiquitinase, strongly curtailed the ability of MLK3 to affect the proapoptotic translocation of BAX in cytokine-stimulated pancreatic ß cells, an early step in the progression toward ß cell death. These studies suggest a novel mechanism for MLK3 activation and provide new clues for therapeutic intervention in promoting ß cell survival.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Células Secretoras de Insulina/citología , Islotes Pancreáticos/citología , Lisina/química , Quinasas Quinasa Quinasa PAM/metabolismo , Ubiquitina/química , Animales , Apoptosis , Muerte Celular , Línea Celular , Técnicas de Cocultivo , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Dimerización , Células Hep G2 , Humanos , Ratones , Factor 6 Asociado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
6.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821378

RESUMEN

Adaptation of the islet ß cell insulin-secretory response to changing insulin demand is critical for blood glucose homeostasis, yet the mechanisms underlying this adaptation are unknown. Here, we have shown that nutrient-stimulated histone acetylation plays a key role in adapting insulin secretion through regulation of genes involved in ß cell nutrient sensing and metabolism. Nutrient regulation of the epigenome occurred at sites occupied by the chromatin-modifying enzyme lysine-specific demethylase 1 (Lsd1) in islets. ß Cell-specific deletion of Lsd1 led to insulin hypersecretion, aberrant expression of nutrient-response genes, and histone hyperacetylation. Islets from mice adapted to chronically increased insulin demand exhibited shared epigenetic and transcriptional changes. Moreover, we found that genetic variants associated with type 2 diabetes were enriched at LSD1-bound sites in human islets, suggesting that interpretation of nutrient signals is genetically determined and clinically relevant. Overall, these studies revealed that adaptive insulin secretion involves Lsd1-mediated coupling of nutrient state to regulation of the islet epigenome.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Secreción de Insulina/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Histonas/genética , Histonas/metabolismo , Epigenoma , Islotes Pancreáticos/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucosa/metabolismo
7.
J Biol Chem ; 285(5): 3406-16, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19833727

RESUMEN

The pancreatic beta cell is sensitive to even small changes in PDX1 protein levels; consequently, Pdx1 haploinsufficiency can inhibit beta cell growth and decrease insulin biosynthesis and gene expression, leading to compromised glucose-stimulated insulin secretion. Using metabolic labeling of primary islets and a cultured beta cell line, we show that glucose levels modulate PDX1 protein phosphorylation at a novel C-terminal GSK3 consensus that maps to serines 268 and 272. A decrease in glucose levels triggers increased turnover of the PDX1 protein in a GSK3-dependent manner, such that PDX1 phosphomutants are refractory to the destabilizing effect of low glucose. Glucose-stimulated activation of AKT and inhibition of GSK3 decrease PDX1 phosphorylation and delay degradation. Furthermore, direct pharmacologic inhibition of AKT destabilizes, and inhibition of GSK3 increases PDX1 protein stability. These studies define a novel functional role for the PDX1 C terminus in mediating the effects of glucose and demonstrate that glucose modulates PDX1 stability via the AKT-GSK3 axis.


Asunto(s)
Regulación de la Expresión Génica , Glucosa/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transactivadores/metabolismo , Animales , Cicloheximida/farmacología , Humanos , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley
8.
J Biol Chem ; 285(29): 22426-36, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20421299

RESUMEN

Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinas/farmacología , Células Secretoras de Insulina/enzimología , Células Secretoras de Insulina/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Represoras/metabolismo , Adulto , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteína X Asociada a bcl-2/química , Proteína X Asociada a bcl-2/metabolismo , Proteina Quinasa Quinasa Quinasa 11 Activada por Mitógeno
9.
Nat Commun ; 11(1): 2082, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32350257

RESUMEN

Developmental progression depends on temporally defined changes in gene expression mediated by transient exposure of lineage intermediates to signals in the progenitor niche. To determine whether cell-intrinsic epigenetic mechanisms contribute to signal-induced transcriptional responses, here we manipulate the signalling environment and activity of the histone demethylase LSD1 during differentiation of hESC-gut tube intermediates into pancreatic endocrine cells. We identify a transient requirement for LSD1 in endocrine cell differentiation spanning a short time-window early in pancreas development, a phenotype we reproduced in mice. Examination of enhancer and transcriptome landscapes revealed that LSD1 silences transiently active retinoic acid (RA)-induced enhancers and their target genes. Furthermore, prolonged RA exposure phenocopies LSD1 inhibition, suggesting that LSD1 regulates endocrine cell differentiation by limiting the duration of RA signalling. Our findings identify LSD1-mediated enhancer silencing as a cell-intrinsic epigenetic feedback mechanism by which the duration of the transcriptional response to a developmental signal is limited.


Asunto(s)
Células Endocrinas/citología , Células Endocrinas/metabolismo , Elementos de Facilitación Genéticos/genética , Silenciador del Gen , Histona Demetilasas/metabolismo , Islotes Pancreáticos/citología , Transducción de Señal , Tretinoina/metabolismo , Adulto , Animales , Secuencia de Bases , Diferenciación Celular/efectos de los fármacos , Células Endocrinas/efectos de los fármacos , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Humanos , Islotes Pancreáticos/embriología , Masculino , Ratones , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Tretinoina/farmacología , Adulto Joven
10.
Am J Pathol ; 172(5): 1312-24, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18403587

RESUMEN

Obesity and diabetes, termed "diabesity," are serious health problems that are increasing in frequency. However, the molecular mechanisms and neuronal regulation of these metabolic disorders are not fully understood. We show here that Shp2, a widely expressed Src homology 2-containing Tyr phosphatase, plays a critical role in the adult brain to control food intake, energy balance, and metabolism. Mice with a neuron-specific, conditional Shp2 deletion were generated by crossing a pan-neuronal Cre-line (CRE3) with Shp2(flox/flox) mice. These congenic mice, CRE3/Shp2-KO, developed obesity and diabetes and the associated pathophysiological complications that resemble those encountered in humans, including hyperglycemia, hyperinsulinemia, hyperleptinemia, insulin and leptin resistance, vasculitis, diabetic nephropathy, urinary bladder infections, prostatitis, gastric paresis, and impaired spermatogenesis. This mouse model may help to elucidate the molecular mechanisms that lead to the development of diabesity in humans and provide a tool to study the in vivo complications of uncontrolled diabetes.


Asunto(s)
Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Cruzamientos Genéticos , Complicaciones de la Diabetes/patología , Complicaciones de la Diabetes/fisiopatología , Diabetes Mellitus/patología , Diabetes Mellitus/fisiopatología , Ingestión de Alimentos , Femenino , Hiperglucemia/metabolismo , Hiperglucemia/fisiopatología , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatología , Resistencia a la Insulina , Leptina/farmacología , Leptina/fisiología , Masculino , Ratones , Ratones Mutantes , Ratones Transgénicos , Obesidad/patología , Obesidad/fisiopatología , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Transducción de Señal
11.
PLoS Biol ; 4(2): e31, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16366736

RESUMEN

Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic beta cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In beta cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in beta cells to affect insulin secretion.


Asunto(s)
Insulina/metabolismo , Canales Iónicos/metabolismo , Islotes Pancreáticos/metabolismo , Proteínas Mitocondriales/metabolismo , Sirtuinas/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Línea Celular , Ayuno , Regulación de la Expresión Génica , Glucosa/farmacología , Insulina/sangre , Secreción de Insulina , Canales Iónicos/genética , Islotes Pancreáticos/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Ratas , Sirtuina 1 , Sirtuinas/deficiencia , Sirtuinas/genética , Proteína Desacopladora 2
12.
J Clin Invest ; 114(6): 828-36, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15372107

RESUMEN

Inadequate compensatory beta cell hyperplasia in insulin-resistant states triggers the development of overt diabetes. The mechanisms that underlie this crucial adaptive response are not fully defined. Here we show that the compensatory islet-growth response to insulin resistance in 2 models--insulin receptor (IR)/IR substrate-1 (IRS-1) double heterozygous mice and liver-specific IR KO (LIRKO) mice--is severely restricted by PDX-1 heterozygosity. Six-month-old IR/IRS-1 and LIRKO mice both showed up to a 10-fold increase in beta cell mass, which involved epithelial-to-mesenchymal transition. In both models, superimposition of PDX-1 haploinsufficiency upon the background of insulin resistance completely abrogated the adaptive islet hyperplastic response, and instead the beta cells showed apoptosis resulting in premature death of the mice. This study shows that, in postdevelopmental states of beta cell growth, PDX-1 is a critical regulator of beta cell replication and is required for the compensatory response to insulin resistance.


Asunto(s)
Resistencia a la Insulina/fisiología , Islotes Pancreáticos/patología , Transactivadores/deficiencia , Envejecimiento/fisiología , Animales , Glucemia/metabolismo , Péptido C/sangre , División Celular , Proteínas de Homeodominio/genética , Hiperplasia , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/genética , Islotes Pancreáticos/citología , Islotes Pancreáticos/fisiología , Ratones , Ratones Noqueados , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Transactivadores/genética
13.
Adipocyte ; 2(1): 17-28, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23599907

RESUMEN

Protein palmitoylation, by modulating the dynamic interaction between protein and cellular membrane, is involved in a wide range of biological processes, including protein trafficking, sorting, sub-membrane partitioning, protein-protein interaction and cell signaling. To explore the role of protein palmitoylation in adipocytes, we have performed proteomic analysis of palmitoylated proteins in adipose tissue and 3T3-L1 adipocytes and identified more than 800 putative palmitoylated proteins. These include various transporters, enzymes required for lipid and glucose metabolism, regulators of protein trafficking and signaling molecules. Of note, key proteins involved in membrane translocation of the glucose-transporter Glut4 including IRAP, Munc18c, AS160 and Glut4, and signaling proteins in the JAK-STAT pathway including JAK1 and 2, STAT1, 3 and 5A and SHP2 in JAK-STAT, were palmitoylated in cultured adipocytes and primary adipose tissue. Further characterization showed that palmitoylation of Glut4 and IRAP was altered in obesity, and palmitoylation of JAK1 played a regulatory role in JAK1 intracellular localization. Overall, our studies provide evidence to suggest a novel and potentially regulatory role for protein palmitoylation in adipocyte function.

14.
J Biol Chem ; 283(51): 35464-73, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18815134

RESUMEN

COP1 is a Ring-Finger E3 ubiquitin ligase that is involved in plant development, mammalian cell survival, growth, and metabolism. Here we report that COP1, whose expression is enhanced by insulin, regulates FoxO1 protein stability. We found that in Fao hepatoma cells, ectopic expression of COP1 decreased, whereas knockdown of COP1 expression increased the level of endogenous FoxO1 protein without impacting other factors such as C/EBPalpha and CREB (cAMP-response element-binding protein). We further showed that COP1 binds FoxO1, enhances its ubiquitination, and promotes its degradation via the ubiquitin-proteasome pathway. To determine the biological significance of COP1-mediated FoxO1 protein degradation, we have examined the impact of COP1 on FoxO1-mediated gene expression and found that COP1 suppressed FoxO1 reporter gene as well as FoxO1 target genes such as glucose-6-phosphatase and phosphoenolpyruvate carboxykinase, two key targets for FoxO1 in the regulation of gluconeogenesis, with corresponding changes of hepatic glucose production in Fao cells. We suggest that by functioning as a FoxO1 E3 ligase, COP1 may play a role in the regulation of hepatic glucose metabolism.


Asunto(s)
Carboxiliasas/biosíntesis , Factores de Transcripción Forkhead/metabolismo , Regulación Enzimológica de la Expresión Génica/fisiología , Gluconeogénesis/fisiología , Glucosa-6-Fosfatasa/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Carboxiliasas/genética , Línea Celular Tumoral , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Glucosa-6-Fosfatasa/genética , Humanos , Hígado , Proteínas del Tejido Nervioso/genética , Unión Proteica/fisiología , Ratas , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética
15.
Mol Cell ; 28(2): 200-13, 2007 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-17964260

RESUMEN

During muscle regeneration, the mechanism integrating environmental cues at the chromatin of muscle progenitors is unknown. We show that inflammation-activated MKK6-p38 and insulin growth factor 1 (IGF1)-induced PI3K/AKT pathways converge on the chromatin of muscle genes to target distinct components of the muscle transcriptosome. p38 alpha/beta kinases recruit the SWI/SNF chromatin-remodeling complex; AKT1 and 2 promote the association of MyoD with p300 and PCAF acetyltransferases, via direct phosphorylation of p300. Pharmacological or genetic interference with either pathway led to partial assembly of discrete chromatin-bound complexes, which reflected two reversible and distinct cellular phenotypes. Remarkably, PI3K/AKT blockade was permissive for chromatin recruitment of MEF2-SWI/SNF complex, whose remodeling activity was compromised in the absence of MyoD and acetyltransferases. The functional interdependence between p38 and IGF1/PI3K/AKT pathways was further established by the evidence that blockade of AKT chromatin targets was sufficient to prevent the activation of the myogenic program triggered by deliberate activation of p38 signaling.


Asunto(s)
Cromatina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , MAP Quinasa Quinasa 6/metabolismo , Desarrollo de Músculos , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Acetilación , Animales , Línea Celular , Forma de la Célula , Cromonas/farmacología , Proteína p300 Asociada a E1A/metabolismo , Regulación del Desarrollo de la Expresión Génica , Imidazoles/farmacología , Factor I del Crecimiento Similar a la Insulina/genética , MAP Quinasa Quinasa 6/genética , Ratones , Morfolinas/farmacología , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/enzimología , Factores Reguladores Miogénicos/metabolismo , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Piridinas/farmacología , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transcripción Genética , Transfección , Factores de Transcripción p300-CBP/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/genética
16.
Am J Physiol Endocrinol Metab ; 289(2): E337-46, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15827066

RESUMEN

Insulin and IGF-I activate antiapoptotic pathways via insulin receptor substrate (IRS) proteins in most mammalian cells, including beta-cells. IRS-1 knockout (IRS-1KO) mice show growth retardation, hyperinsulinemia, and hyperplastic but dysfunctional islets without developing overt diabetes, whereas IRS-2KOs develop insulin resistance and islet hypoplasia leading to diabetes. Because both models display insulin resistance, it is difficult to differentiate islet response to insulin resistance from islet defects due to loss of proteins in the islets themselves. We used a transplantation approach, as a means of separating host insulin resistance from islet function, to examine alterations in proteins in insulin/IGF-I signaling pathways that may contribute to beta-cell proliferation and/or apoptosis in IRS-1KO islets. Islets isolated from wild-type (WT) or IRS-1KO mice were transplanted into WT or insulin-resistant IRS-1KO males under the kidney capsule. The beta-cell mitotic rate in transplanted islets in IRS-1KO recipients was increased 1.5-fold compared with WT recipients and was similar to that in endogenous pancreases of IRS-1KOs, whereas beta-cell apoptosis was reduced by approximately 80% in IRS-1KO grafts in IRS-1KO recipients compared with WT recipients. Immunohistochemistry showed a substantial increase in IRS-2 expression in IRS-1KO islets transplanted into IRS-1KO mice as well as in endogenous islets from IRS-1KOs. Furthermore, enhanced cytosolic forkhead transcription factor (FoxO1) staining in IRS-1KO grafts suggests intact Akt/PKB activity. Together, these data indicate that, even in the absence of insulin resistance, beta-cells deficient in IRS-1 exhibit a compensatory increase in IRS-2, which is associated with islet growth and is characterized by both proliferative and antiapoptotic effects that likely occur via an insulin/IGF-I/IRS-2 pathway.


Asunto(s)
Apoptosis/fisiología , Insulina/fisiología , Islotes Pancreáticos/fisiología , Fosfoproteínas/fisiología , Transducción de Señal/fisiología , Adaptación Fisiológica , Animales , Proliferación Celular , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina/fisiología , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/citología , Islotes Pancreáticos/crecimiento & desarrollo , Trasplante de Islotes Pancreáticos , Riñón/cirugía , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
17.
Genes Dev ; 17(13): 1575-80, 2003 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12842910

RESUMEN

The incretin hormone GLP1 promotes islet-cell survival via the second messenger cAMP. Here we show that mice deficient in the activity of CREB, caused by expression of a dominant-negative A-CREB transgene in pancreatic beta-cells, develop diabetes secondary to beta-cell apoptosis. Remarkably, A-CREB severely disrupted expression of IRS2, an insulin signaling pathway component that is shown here to be a direct target for CREB action in vivo. As induction of IRS2by cAMP enhanced activation of the survival kinase Akt in response to insulin and IGF-1, our results demonstrate a novel mechanism by which opposing pathways cooperate in promoting cell survival.


Asunto(s)
Supervivencia Celular , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Islotes Pancreáticos/fisiología , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas , Animales , Apoptosis , Línea Celular , Colforsina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Diabetes Mellitus/etiología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Regulación de la Expresión Génica , Glucagón/metabolismo , Péptido 1 Similar al Glucagón , Glucosa/metabolismo , Intolerancia a la Glucosa , Humanos , Insulina/sangre , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina , Factor I del Crecimiento Similar a la Insulina/farmacología , Péptidos y Proteínas de Señalización Intracelular , Islotes Pancreáticos/metabolismo , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo , Fosforilación , Regiones Promotoras Genéticas , Precursores de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Transfección , Transgenes , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA