Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066410

RESUMEN

Pig weight and body size are important indicators for producers. Due to the increasing scale of pig farms, it is increasingly difficult for farmers to quickly and automatically obtain pig weight and body size. Due to this problem, we focused on a multiple output regression convolutional neural network (CNN) to estimate pig weight and body size. DenseNet201, ResNet152 V2, Xception and MobileNet V2 were modified into multiple output regression CNNs and trained on modeling data. By comparing the estimated performance of each model on test data, modified Xception was selected as the optimal estimation model. Based on pig height, body shape, and contour, the mean absolute error (MAE) of the model to estimate body weight (BW), shoulder width (SW), shoulder height (SH), hip width (HW), hip width (HH), and body length (BL) were 1.16 kg, 0.33 cm, 1.23 cm, 0.38 cm, 0.66 cm, and 0.75 cm, respectively. The coefficient of determination (R2) value between the estimated and measured results was in the range of 0.9879-0.9973. Combined with the LabVIEW software development platform, this method can estimate pig weight and body size accurately, quickly, and automatically. This work contributes to the automatic management of pig farms.


Asunto(s)
Aprendizaje Profundo , Animales , Estatura , Peso Corporal , Humanos , Redes Neurales de la Computación , Proyectos de Investigación , Porcinos
2.
Animals (Basel) ; 13(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37443876

RESUMEN

Aggressive behavior among pigs is a significant social issue that has severe repercussions on both the profitability and welfare of pig farms. Due to the complexity of aggression, recognizing it requires the consideration of both spatial and temporal features. To address this problem, we proposed an efficient method that utilizes the temporal shift module (TSM) for automatic recognition of pig aggression. In general, TSM is inserted into four 2D convolutional neural network models, including ResNet50, ResNeXt50, DenseNet201, and ConvNext-t, enabling the models to process both spatial and temporal features without increasing the model parameters and computational complexity. The proposed method was evaluated on the dataset established in this study, and the results indicate that the ResNeXt50-T (TSM inserted into ResNeXt50) model achieved the best balance between recognition accuracy and model parameters. On the test set, the ResNeXt50-T model achieved accuracy, recall, precision, F1 score, speed, and model parameters of 95.69%, 95.25%, 96.07%, 95.65%, 29 ms, and 22.98 M, respectively. These results show that the proposed method can effectively improve the accuracy of recognizing pig aggressive behavior and provide a reference for behavior recognition in actual scenarios of smart livestock farming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA