Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29499134

RESUMEN

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , MicroARNs/metabolismo , ARN de Helminto/metabolismo , Proteína FUS de Unión a ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Ratones , MicroARNs/genética , ARN de Helminto/genética , Proteína FUS de Unión a ARN/genética
2.
Genes Dev ; 32(21-22): 1380-1397, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30366907

RESUMEN

Cells undergo metabolic adaptation during environmental changes by using evolutionarily conserved stress response programs. This metabolic homeostasis is exquisitely regulated, and its imbalance could underlie human pathological conditions. We report here that C9orf72, which is linked to the most common forms of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a key regulator of lipid metabolism under stress. Loss of C9orf72 leads to an overactivation of starvation-induced lipid metabolism that is mediated by dysregulated autophagic digestion of lipids and increased de novo fatty acid synthesis. C9orf72 acts by promoting the lysosomal degradation of coactivator-associated arginine methyltransferase 1 (CARM1), which in turn regulates autophagy-lysosomal functions and lipid metabolism. In ALS/FTD patient-derived neurons or tissues, a reduction in C9orf72 function is associated with dysregulation in the levels of CARM1, fatty acids, and NADPH oxidase NOX2. These results reveal a C9orf72-CARM1 axis in the control of stress-induced lipid metabolism and implicates epigenetic dysregulation in relevant human diseases.


Asunto(s)
Proteína C9orf72/fisiología , Glucosa/fisiología , Metabolismo de los Lípidos , Proteína-Arginina N-Metiltransferasas/metabolismo , Estrés Fisiológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Ácidos Grasos/metabolismo , Demencia Frontotemporal/genética , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Lisosomas/metabolismo , Ratones , Proteína-Arginina N-Metiltransferasas/fisiología
3.
PLoS Genet ; 16(4): e1008738, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32282804

RESUMEN

Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Lipólisis , Transporte Activo de Núcleo Celular , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteína C9orf72/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Unión al GTP Monoméricas/metabolismo
4.
Genes Dev ; 27(5): 491-503, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23475958

RESUMEN

The formation of tissue boundaries is dependent on the cell-cell adhesion/repulsion system that is required for normal morphogenetic processes during development. The Smad ubiquitin regulatory factors (Smurfs) are E3 ubiquitin ligases with established roles in cell growth and differentiation, but whose roles in regulating cell adhesion and migration are just beginning to emerge. Here, we demonstrate that the Smurfs regulate tissue separation at mesoderm/ectoderm boundaries through antagonistic interactions with ephrinB1, an Eph receptor ligand that has a key role in regulating the separation of embryonic germ layers. EphrinB1 is targeted by Smurf2 for degradation; however, a Smurf1 interaction with ephrinB1 prevents the association with Smurf2 and precludes ephrinB1 from ubiquitination and degradation, since it is a substantially weaker substrate for Smurf1. Inhibition of Smurf1 expression in embryonic mesoderm results in loss of ephrinB1-mediated separation of this tissue from the ectoderm, which can be rescued by the coincident inhibition of Smurf2 expression. This system of differential interactions between Smurfs and ephrinB1 regulates the maintenance of tissue boundaries through the control of ephrinB protein levels.


Asunto(s)
Efrina-B1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Xenopus/genética , Xenopus/metabolismo , Animales , Embrión no Mamífero/enzimología , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas de Unión al GTP Monoméricas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Pez Cebra/metabolismo
5.
PLoS Genet ; 12(11): e1006443, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27875531

RESUMEN

The most common cause of the neurodegenerative diseases amyotrophic lateral sclerosis and frontotemporal dementia is a hexanucleotide repeat expansion in C9orf72. Here we report a study of the C9orf72 protein by examining the consequences of loss of C9orf72 functions. Deletion of one or both alleles of the C9orf72 gene in mice causes age-dependent lethality phenotypes. We demonstrate that C9orf72 regulates nutrient sensing as the loss of C9orf72 decreases phosphorylation of the mTOR substrate S6K1. The transcription factor EB (TFEB), a master regulator of lysosomal and autophagy genes, which is negatively regulated by mTOR, is substantially up-regulated in C9orf72 loss-of-function animal and cellular models. Consistent with reduced mTOR activity and increased TFEB levels, loss of C9orf72 enhances autophagic flux, suggesting that C9orf72 is a negative regulator of autophagy. We identified a protein complex consisting of C9orf72 and SMCR8, both of which are homologous to DENN-like proteins. The depletion of C9orf72 or SMCR8 leads to significant down-regulation of each other's protein level. Loss of SMCR8 alters mTOR signaling and autophagy. These results demonstrate that the C9orf72-SMCR8 protein complex functions in the regulation of metabolism and provide evidence that loss of C9orf72 function may contribute to the pathogenesis of relevant diseases.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas Portadoras/genética , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/genética , Factores de Intercambio de Guanina Nucleótido/genética , Serina-Treonina Quinasas TOR/genética , Alelos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/biosíntesis , Proteína C9orf72 , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Humanos , Ratones , Fenotipo , Proteínas Quinasas S6 Ribosómicas 90-kDa/biosíntesis , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/biosíntesis
6.
J Biol Chem ; 289(26): 18556-68, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24825906

RESUMEN

The Eph receptors and their membrane-bound ligands, ephrins, play important roles in various biological processes such as cell adhesion and movement. The transmembrane ephrinBs transduce reverse signaling in a tyrosine phosphorylation-dependent or -independent, as well as PDZ-dependent manner. Here, we show that ephrinB1 interacts with Connector Enhancer of KSR1 (CNK1) in an EphB receptor-independent manner. In cultured cells, cotransfection of ephrinB1 with CNK1 increases JNK phosphorylation. EphrinB1/CNK1-mediated JNK activation is reduced by overexpression of dominant-negative RhoA. Overexpression of CNK1 alone is sufficient for activation of RhoA; however, both ephrinB1 and CNK1 are required for JNK phosphorylation. Co-immunoprecipitation data showed that ephrinB1 and CNK1 act as scaffold proteins that connect RhoA and JNK signaling components, such as p115RhoGEF and MKK4. Furthermore, adhesion to fibronectin or active Src overexpression increases ephrinB1/CNK1 binding, whereas blocking Src activity by a pharmacological inhibitor decreases not only ephrinB1/CNK1 binding, but also JNK activation. EphrinB1 overexpression increases cell motility, however, CNK1 depletion by siRNA abrogates ephrinB1-mediated cell migration and JNK activation. Moreover, Rho kinase inhibitor or JNK inhibitor treatment suppresses ephrinB1-mediated cell migration. Taken together, our findings suggest that CNK1 is required for ephrinB1-induced JNK activation and cell migration.


Asunto(s)
Movimiento Celular , Efrina-B1/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Línea Celular , Línea Celular Tumoral , Activación Enzimática , Efrina-B1/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Fosforilación , Unión Proteica , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
7.
J Biol Chem ; 288(20): 14135-14146, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-23558677

RESUMEN

Abl interactor 1 (Abi1) is a scaffold protein that plays a central role in the regulation of actin cytoskeleton dynamics as a constituent of several key protein complexes, and homozygous loss of this protein leads to embryonic lethality in mice. Because this scaffold protein has been shown in cultured cells to be a critical component of pathways controlling cell migration and actin regulation at cell-cell contacts, we were interested to investigate the in vivo role of Abi1 in morphogenesis during the development of Xenopus embryos. Using morpholino-mediated translation inhibition, we demonstrate that knockdown of Abi1 in the whole embryo, or specifically in eye field progenitor cells, leads to disruption of eye morphogenesis. Moreover, signaling through the Src homology 3 domain of Abi1 is critical for proper movement of retinal progenitor cells into the eye field and their appropriate differentiation, and this process is dependent upon an interaction with the nucleation-promoting factor Wasp (Wiskott-Aldrich syndrome protein). Collectively, our data demonstrate that the Abi1 scaffold protein is an essential regulator of cell movement processes required for normal eye development in Xenopus embryos and specifically requires an Src homology 3 domain-dependent interaction with Wasp to regulate this complex morphogenetic process.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ojo/embriología , Regulación del Desarrollo de la Expresión Génica , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Xenopus/fisiología , Xenopus/embriología , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Linaje de la Célula , Movimiento Celular , Sistemas de Lectura Abierta , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Retina/embriología , Transducción de Señal , Células Madre/citología , Xenopus/genética , Proteínas de Xenopus/química , Dominios Homologos src
8.
Bio Protoc ; 9(1)2019 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-30792567

RESUMEN

Heterochrony refers to changes in the timing of developmental events, and it is precisely regulated in the organisms by the heterochronic genes such as C. elegans lin-4 and let-7. Mutations in these genes cause precocious or retarded development of certain cell lineages. With well-defined cell lineages, C. elegans is one of the best model systems to study heterochronic genes, since the subtle changes in the development of cell lineages can be easily identified. Among the different cell types in C. elegans, hypodermal seam cells and their lineages are well known to be maintained by lin-14, whose expression level is regulated by two miRNA genes, lin-4 and let-7, at the larval stages. Therefore, analyzing the heterochronic phenotype of hypodermal seam cells in C. elegans could yield detailed insights into the status of the miRNA pathway. Here we describe the assay protocol to analyze the heterochronic phenotypes of C. elegans hypodermal seam cells, which can be used as a reliable method to study the miRNA pathway.

9.
Autophagy ; 13(7): 1254-1255, 2017 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-28319438

RESUMEN

A genetic mutation in the C9orf72 gene causes the most common forms of neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 protein, predicted to be a DENN-family protein, is reduced in ALS and FTD, but its functions remain poorly understood. Using a 3110043O21Rik/C9orf72 knockout mouse model, as well as cellular analysis, we have found that loss of C9orf72 causes alterations in the signaling states of central autophagy regulators. In particular, C9orf72 depletion leads to reduced activity of MTOR, a negative regulator of macroautophagy/autophagy, and concomitantly increased TFEB levels and nuclear translocation. Consistent with these alterations, cells exhibit enlarged lysosomal compartments and enhanced autophagic flux. Loss of the C9orf72 interaction partner SMCR8 results in similar phenotypes. Our findings suggest that C9orf72 functions as a potent negative regulator of autophagy, with a central role in coupling the cellular metabolic state with autophagy regulation. We thus propose C9orf72 as a fundamental component of autophagy signaling with implications in basic cell physiology and pathophysiology, including neurodegeneration.


Asunto(s)
Autofagia , Proteína C9orf72/genética , Esclerosis Amiotrófica Lateral/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/genética , Demencia Frontotemporal/genética , Ratones Noqueados , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
10.
FEBS Lett ; 580(13): 3161-6, 2006 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-16684534

RESUMEN

Vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump, which transports protons across the membrane. It is a multi-protein complex which is composed of at least 13 subunits. The Caenorhabditis elegans vha-8 encodes the E subunit of V-ATPase which is expressed in the hypodermis, intestine and H-shaped excretory cells. VHA-8 is necessary for proper intestinal function likely through its role in cellular acidification of intestinal cells. The null mutants of vha-8 show a larval lethal phenotype indicating that vha-8 is an essential gene for larval development in C. elegans. Interestingly, characteristics of necrotic cell death were observed in the hypodermis and intestine of the arrested larvae suggesting that pH homeostasis via the E subunit of V-ATPase is required for the cell survival in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/crecimiento & desarrollo , Genes Letales , ATPasas de Translocación de Protón Vacuolares/genética , ATPasas de Translocación de Protón Vacuolares/fisiología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análisis , Proteínas de Caenorhabditis elegans/genética , Eliminación de Gen , Homeostasis , Intestinos/enzimología , Larva/enzimología , Datos de Secuencia Molecular , Subunidades de Proteína/análisis , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , ATPasas de Translocación de Protón Vacuolares/análisis
11.
Gene ; 311: 13-23, 2003 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-12853134

RESUMEN

Vacuolar H(+)-ATPases (V-ATPases) are ATP-dependent proton pumps localized at membranes of intracellular acidic organelles and plasma membranes of various cell types. By virtue of its regulation in acidification, V-ATPase is required for many intracellular processes such as receptor-mediated endocytosis and protein sorting. Here we report the molecular characterization of the E subunit of V-ATPase in Caenorhabditis elegans. This subunit is one of the most well conserved subunits sharing approximately 57% identity with the human homologue, ATP6E. Green fluorescent protein (GFP) and whole-mount immunostaining analyses showed that V-ATPase E subunit (vha-8) is abundantly expressed in the H-shaped excretory cell, consistent with the expression patterns observed for other V-ATPase subunits. Double-stranded RNAs (or RNAi) targeted to vha-8 resulted in embryonic and larval lethality for the first filial generation, indicating that vha-8 is essential during early developmental processes. In addition, accumulation of abnormal endomitotic oocytes and defects in receptor-mediated endocytosis were observed in parental animals. These findings suggest that multiple phenotypes caused by the disruption of pH homeostasis are due to the defective V-ATPase. In summary, vha-8 encoding the E subunit of V-ATPase in C. elegans is essential for embryogenesis and receptor-mediated endocytosis.


Asunto(s)
Caenorhabditis elegans/enzimología , Yema de Huevo/metabolismo , Desarrollo Embrionario , ATPasas de Translocación de Protón Vacuolares/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Embrión no Mamífero/enzimología , Embrión no Mamífero/ultraestructura , Femenino , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Proteínas Fluorescentes Verdes , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Microscopía Fluorescente , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reproducción/genética , Homología de Secuencia de Aminoácido , ATPasas de Translocación de Protón Vacuolares/genética
12.
Nat Commun ; 5: 3516, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662724

RESUMEN

The Eph/ephrin signalling pathways have a critical function in cell adhesion and repulsion, and thus play key roles in various morphogenetic events during development. Here we show that a decrease in ephrinB2 protein causes neural tube closure defects during Xenopus laevis embryogenesis. Such a decrease in ephrinB2 protein levels is observed on the loss of flotillin-1 scaffold protein, a newly identified ephrinB2-binding partner. This dramatic decline in ephrinB2 protein levels on the absence of flotillin-1 expression is specific, and is partly the result of an increased susceptibility to cleavage by the metalloprotease ADAM10. These findings indicate that flotillin-1 regulates ephrinB2 protein levels through ADAM10, and is required for appropriate neural tube morphogenesis in the Xenopus embryo.


Asunto(s)
Proteínas ADAM/metabolismo , Efrina-B2/metabolismo , Proteínas de la Membrana/metabolismo , Morfogénesis/fisiología , Defectos del Tubo Neural/embriología , Transducción de Señal/fisiología , Xenopus laevis/embriología , Animales , Western Blotting , Embrión no Mamífero/fisiología , Inmunoprecipitación , Microscopía Fluorescente , Defectos del Tubo Neural/metabolismo , Xenopus laevis/metabolismo
13.
J Mol Biol ; 417(3): 165-78, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22300764

RESUMEN

Calcineurin is a Ca(2+)/calmodulin-dependent protein phosphatase involved in calcium signaling pathways. In Caenorhabditis elegans, the loss of calcineurin activity causes pleiotropic defects including hyperadaptation of sensory neurons, hypersensation to thermal difference and hyper-egg-laying when worms are refed after starvation. In this study, we report on arrd-17 as calcineurin-interacting protein-1 (cnp-1), which is a novel molecular target of calcineurin. CNP-1 interacts with the catalytic domain of the C. elegans calcineurin A subunit, TAX-6, in a yeast two-hybrid assay and is dephosphorylated by TAX-6 in vitro. cnp-1 is expressed in ASK, ADL, ASH and ASJ sensory neurons as TAX-6. It acts downstream of tax-6 in regulation of locomotion and egg-laying after starvation, ASH sensory neuron adaptation and lysine chemotaxis, that is known to be mediated by ASK neurons. Altogether, our biochemical and genetic evidence indicates that CNP-1 is a direct target of calcineurin and required in stimulated egg-laying and locomotion after starvation, adaptation to hyperosmolarity and attraction to lysine, which is modulated by calcineurin. We suggest that the phosphorylation status of CNP-1 plays an important role in regulation of refed stimulating behaviors after starvation and attraction to amino acid, which provides valuable nutritious information.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcineurina/metabolismo , Proteínas Portadoras/metabolismo , Locomoción/fisiología , Oviposición/fisiología , Adaptación Fisiológica , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Arrestina/química , Proteínas de Caenorhabditis elegans/genética , Calcineurina/genética , Proteínas Portadoras/genética , Femenino , Alimentos , Regulación de la Expresión Génica , Lisina , Datos de Secuencia Molecular , Mutación , Sistema Nervioso/crecimiento & desarrollo , Fosforilación , Sensación , Células Receptoras Sensoriales , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
14.
Mol Cells ; 30(3): 255-62, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20803083

RESUMEN

C. elegans coelomocytes are macrophage-like scavenger cells that provide an excellent in vivo system for the study of clathrin-mediated endocytosis. Using this in vivo system, several genes involved in coelomocyte endocytosis have been identified previously. However, the detailed mechanism of endocytic pathway is still unknown. Here, we report a new function of calcineurin, an evolutionarily conserved Ca(2+)/calmodulin-dependent Ser/Thr protein phosphatase, in coelomocyte endocytosis. We found that calcineurin mutants show defective coelomocyte endocytosis. Genetic analysis suggests that calcineurin and a GTPase, dynamin (DYN-1), may function upstream of an orphan receptor, CUP-4, to regulate endocytosis. Therefore, we propose a model in which calcineurin may regulate coelomocyte endocytosis via DYN-1 and CUP-4 in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Calcineurina/metabolismo , Dinaminas/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Calcineurina/genética , Calcio/metabolismo , Células Cultivadas , Endocitosis/genética , Mutación/genética , Transducción de Señal
15.
Mol Biol Cell ; 20(1): 124-33, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19005214

RESUMEN

The Eph family of receptor tyrosine kinases and their membrane-bound ligands, the ephrins, have been implicated in regulating cell adhesion and migration during development by mediating cell-to-cell signaling events. The transmembrane ephrinB1 protein is a bidirectional signaling molecule that signals through its cytoplasmic domain to promote cellular movements into the eye field, whereas activation of the fibroblast growth factor receptor (FGFR) represses these movements and retinal fate. In Xenopus embryos, ephrinB1 plays a role in retinal progenitor cell movement into the eye field through an interaction with the scaffold protein Dishevelled (Dsh). However, the mechanism by which the FGFR may regulate this cell movement is unknown. Here, we present evidence that FGFR-induced repression of retinal fate is dependent upon phosphorylation within the intracellular domain of ephrinB1. We demonstrate that phosphorylation of tyrosines 324 and 325 disrupts the ephrinB1/Dsh interaction, thus modulating retinal progenitor movement that is dependent on the planar cell polarity pathway. These results provide mechanistic insight into how fibroblast growth factor signaling modulates ephrinB1 control of retinal progenitor movement within the eye field.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Efrina-B1/metabolismo , Fosfoproteínas/metabolismo , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Xenopus laevis/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Secuencia de Aminoácidos , Animales , Proteínas Dishevelled , Efrina-B1/genética , Humanos , Datos de Secuencia Molecular , Fosfoproteínas/genética , Fosforilación , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Retina/citología , Retina/embriología , Transducción de Señal/fisiología , Células Madre/citología , Células Madre/metabolismo , Tirosina/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/anatomía & histología
16.
Biochem Biophys Res Commun ; 352(1): 29-35, 2007 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-17113567

RESUMEN

Calcineurin is a Ca2+/Calmodulin activated Ser/Thr phosphatase that is well conserved from yeast to human. In Caenorhabditis elegans, tax-6 and cnb-1 encode catalytic and regulatory subunits of calcineurin, respectively. We performed yeast two-hybrid screening using TAX-6 as a bait to identify calcineurin interacting proteins. KIN-29 is one of proteins that specifically interacted with TAX-6. KIN-29 is a Ser/Thr kinase previously shown to be involved in regulating gene expression of a subset of chemoreceptors in specific neurons. Both TAX-6 and KIN-29 are expressed in hypodermis, muscles, and neurons. Moreover, both calcineurin and kin-29 mutants exhibit similar phenotypes, namely small body size, small brood size, and slow growth. Here we describe specific genetic interaction between tax-6 and kin-29 in regulating body size, serotonin mediated egg laying, and chemoreceptor expression.


Asunto(s)
Caenorhabditis elegans/metabolismo , Calcineurina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas de Caenorhabditis elegans , Catálisis , Regulación del Desarrollo de la Expresión Génica , Mutación/genética , Neuronas/metabolismo , Óvulo/efectos de los fármacos , Fenotipo , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores Odorantes/metabolismo , Serotonina/farmacología
17.
J Cell Biochem ; 96(1): 8-15, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-15988754

RESUMEN

RUNXs are important transcription factors, which are involved in animal development and human carcinogenesis. RNT-1, the only homologue of RUNXs, in Caenorhabditis elegans (C. elegans) has been identified and viable mutant animals of rnt-1 gene have been isolated and characterized recently. Genetic analyses using rnt-1 mutants have shown that RNT-1 is regulated by TGFbeta- and Wnt-signaling pathways in the body size regulation and male tail development. Here, we review our current understanding of RNT-1 functions in these signaling pathways. Furthermore, future prospects of RNT-1 and BRO-1 studies in C. elegans are discussed in this review.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/genética , Regulación de la Expresión Génica/fisiología , Factores de Transcripción/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/fisiología
18.
Biochem Biophys Res Commun ; 293(4): 1295-300, 2002 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-12054517

RESUMEN

As a result of screen searching for proteins interacting with MEF-2 transcription factor, we have identified the hda-7 gene in Caenorhabditis elegans. The hda-7 locus encodes a class II histone deacetylase containing a highly conserved catalytic domain. C. elegans HDA-7 protein translated in vitro demonstrated a direct interaction with CeMEF-2, as shown in other organisms. CeHDA-7 is abundantly expressed in body-wall muscle cells, neurons, and hypodermal seam cells, similar to CeMEF-2 expression patterns. Consistent with previously known phenotypes observed in mef-2 deletion mutants [Dev. Biol. 223 (2000) 431], RNA interference targeted for hda-7 did not result in muscle function or developmental defects.


Asunto(s)
Caenorhabditis elegans/enzimología , Histona Desacetilasas/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Northern Blotting , Western Blotting , Dominio Catalítico , ADN Complementario/metabolismo , Eliminación de Gen , Genes Reporteros , Glutatión Transferasa/metabolismo , Histona Desacetilasas/metabolismo , Datos de Secuencia Molecular , Músculos/enzimología , Mutación , Neuronas/enzimología , Fenotipo , Biosíntesis de Proteínas , ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
19.
Dev Biol ; 274(2): 402-12, 2004 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-15385167

RESUMEN

The rnt-1 gene is the only Caenorhabditis elegans homologue of the mammalian RUNX genes. Several lines of molecular biological evidence have demonstrated that the RUNX proteins interact and cooperate with Smads, which are transforming growth factor-beta (TGF-beta) signal mediators. However, the involvement of RUNX in TGF-beta signaling has not yet been supported by any genetic evidence. The Sma/Mab TGF-beta signaling pathway in C. elegans is known to regulate body length and male tail development. The rnt-1(ok351) mutants show the characteristic phenotypes observed in mutants of the Sma/Mab pathway, namely, they have a small body size and ray defects. Moreover, RNT-1 can physically interact with SMA-4 which is one of the Smads in C. elegans, and double mutant animals containing both the rnt-1(ok351) mutation and a mutation in a known Sma/Mab pathway gene displayed synergism in the aberrant phenotypes. In addition, lon-1(e185) mutants was epistatic to rnt-1(ok351) mutants in terms of long phenotype, suggesting that lon-1 is indeed downstream target of rnt-1. Our data reveal that RNT-1 functionally cooperates with the SMA-4 proteins to regulate body size and male tail development in C. elegans.


Asunto(s)
Tamaño Corporal , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Masculino , Datos de Secuencia Molecular , Mutación , Fenotipo , Transducción de Señal/fisiología , Cola (estructura animal)/anatomía & histología , Cola (estructura animal)/crecimiento & desarrollo , Factores de Transcripción/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA