Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell ; 186(2): 287-304.e26, 2023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36610399

RESUMEN

Whether and how certain transposable elements with viral origins, such as endogenous retroviruses (ERVs) dormant in our genomes, can become awakened and contribute to the aging process is largely unknown. In human senescent cells, we found that HERVK (HML-2), the most recently integrated human ERVs, are unlocked to transcribe viral genes and produce retrovirus-like particles (RVLPs). These HERVK RVLPs constitute a transmissible message to elicit senescence phenotypes in young cells, which can be blocked by neutralizing antibodies. The activation of ERVs was also observed in organs of aged primates and mice as well as in human tissues and serum from the elderly. Their repression alleviates cellular senescence and tissue degeneration and, to some extent, organismal aging. These findings indicate that the resurrection of ERVs is a hallmark and driving force of cellular senescence and tissue aging.


Asunto(s)
Envejecimiento , Retrovirus Endógenos , Anciano , Animales , Humanos , Ratones , Envejecimiento/genética , Envejecimiento/patología , Senescencia Celular , Retrovirus Endógenos/genética , Primates
2.
Nucleic Acids Res ; 50(D1): D1085-D1090, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34591960

RESUMEN

Regeneration plays an instrumental role in biological development and damage repair by constructing and replacing cells, tissues, and organs. Since regenerative capacity declines with age, promoting regeneration is heralded as a potential strategy for delaying aging. On this premise, mechanisms that regulate regeneration have been extensively studied across species and in different tissues. However, an open and comprehensive database collecting and standardizing the abundant data generated in regeneration research, such as high-throughput sequencing data, remains to be developed. In this work, we constructed Regeneration Roadmap to systematically and comprehensively collect such information over 2.38 million data entries across 11 species and 36 tissues, including regeneration-related genes, bulk and single-cell transcriptomics, epigenomics, and pharmacogenomics data. In this database, users can explore regulatory and expression changes of regeneration-associated genes in different species and tissues. Regeneration Roadmap provides the research community with a long-awaited and valuable data resource featuring convenient computing and visualizing tools, which is publicly available at https://ngdc.cncb.ac.cn/regeneration/index.


Asunto(s)
Bases de Datos Factuales , Bases de Datos Genéticas , Regeneración/genética , Transcriptoma/genética , Envejecimiento/genética , Animales , Epigenómica , Humanos
3.
Nucleic Acids Res ; 50(6): 3323-3347, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35286396

RESUMEN

Aging in humans is intricately linked with alterations in circadian rhythms concomitant with physiological decline and stem cell exhaustion. However, whether the circadian machinery directly regulates stem cell aging, especially in primates, remains poorly understood. In this study, we found that deficiency of BMAL1, the only non-redundant circadian clock component, results in an accelerated aging phenotype in both human and cynomolgus monkey mesenchymal progenitor cells (MPCs). Unexpectedly, this phenotype was mainly attributed to a transcription-independent role of BMAL1 in stabilizing heterochromatin and thus preventing activation of the LINE1-cGAS-STING pathway. In senescent primate MPCs, we observed decreased capacity of BMAL1 to bind to LINE1 and synergistic activation of LINE1 expression. Likewise, in the skin and muscle tissues from the BMAL1-deficient cynomolgus monkey, we observed destabilized heterochromatin and aberrant LINE1 transcription. Altogether, these findings uncovered a noncanonical role of BMAL1 in stabilizing heterochromatin to inactivate LINE1 that drives aging in primate cells.


Asunto(s)
Factores de Transcripción ARNTL , Senescencia Celular , Relojes Circadianos , Macaca fascicularis/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Animales , Relojes Circadianos/genética , Ritmo Circadiano , Heterocromatina , Macaca fascicularis/genética
4.
Nucleic Acids Res ; 49(8): 4203-4219, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33706382

RESUMEN

Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.


Asunto(s)
Envejecimiento/metabolismo , Heterocromatina/metabolismo , Sirtuina 3/fisiología , Envejecimiento/genética , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Células Cultivadas , Senescencia Celular/genética , Senescencia Celular/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Heterocromatina/genética , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Desnudos , Ratones SCID , Membrana Nuclear/metabolismo , Dominios Proteicos , Sirtuina 3/química , Sirtuina 3/genética
5.
PLoS Genet ; 15(12): e1008513, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841522

RESUMEN

Whereas complete loss of Rp function is generally lethal, most heterozygous Rp mutants grow more slowly and are subject to competitive loss from mosaics tissues that also contain wild type cells. The rpS12 gene has a special role in the cell competition of other Ribosomal Protein (Rp) mutant cells in Drosophila. Elimination by cell competition is promoted by higher RpS12 levels and prevented by a specific rpS12 mis-sense mutation, identifying RpS12 as a key effector of cell competition due to mutations in other Rp genes. Here we show that RpS12 is also required for other aspects of Rp mutant phenotypes, including hundreds of gene expression changes that occur in 'Minute' Rp heterozygous wing imaginal discs, overall translation rate, and the overall rate of organismal development, all through the bZip protein Xrp1 that is one of the RpS12-regulated genes. Our findings outline the regulatory response to mutations affecting essential Rp genes that controls overall translation, growth, and cell competition, and which may contribute to cancer and other diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Discos Imaginales/crecimiento & desarrollo , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/metabolismo , Masculino , Mutación Missense , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ARN
7.
Annu Rev Biomed Data Sci ; 6: 129-152, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37127051

RESUMEN

Organismal aging exhibits wide-ranging hallmarks in divergent cell types across tissues, organs, and systems. The advancement of single-cell technologies and generation of rich datasets have afforded the scientific community the opportunity to decode these hallmarks of aging at an unprecedented scope and resolution. In this review, we describe the technological advancements and bioinformatic methodologies enabling data interpretation at the cellular level. Then, we outline the application of such technologies for decoding aging hallmarks and potential intervention targets and summarize common themes and context-specific molecular features in representative organ systems across the body. Finally, we provide a brief summary of available databases relevant for aging research and present an outlook on the opportunities in this emerging field.


Asunto(s)
Biología Computacional , Bases de Datos Factuales
8.
Protein Cell ; 14(3): 180-201, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36933008

RESUMEN

Progressive functional deterioration in the cochlea is associated with age-related hearing loss (ARHL). However, the cellular and molecular basis underlying cochlear aging remains largely unknown. Here, we established a dynamic single-cell transcriptomic landscape of mouse cochlear aging, in which we characterized aging-associated transcriptomic changes in 27 different cochlear cell types across five different time points. Overall, our analysis pinpoints loss of proteostasis and elevated apoptosis as the hallmark features of cochlear aging, highlights unexpected age-related transcriptional fluctuations in intermediate cells localized in the stria vascularis (SV) and demonstrates that upregulation of endoplasmic reticulum (ER) chaperon protein HSP90AA1 mitigates ER stress-induced damages associated with aging. Our work suggests that targeting unfolded protein response pathways may help alleviate aging-related SV atrophy and hence delay the progression of ARHL.


Asunto(s)
Presbiacusia , Transcriptoma , Ratones , Animales , Envejecimiento/metabolismo , Cóclea , Estría Vascular
9.
J Genet Genomics ; 49(4): 287-298, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34856390

RESUMEN

Maintaining metabolic homeostasis is essential for cellular and organismal health throughout life. Multiple signaling pathways that regulate metabolism also play critical roles in aging, such as PI3K/AKT, mTOR, AMPK, and sirtuins (SIRTs). Among them, sirtuins are known as a protein family with versatile functions, such as metabolic control, epigenetic modification and lifespan extension. Therefore, by understanding how sirtuins regulate metabolic processes, we can start to understand how they slow down or accelerate biological aging from the perspectives of metabolic regulation. Here, we review the biology of SIRT3, SIRT4, and SIRT5, known as the mitochondrial sirtuins due to their localization in the mitochondrial matrix. First, we will discuss canonical pathways that regulate metabolism more broadly and how these are integrated with aging regulation. Then, we will summarize the current knowledge about functional differences between SIRT3, SIRT4, and SIRT5 in metabolic control and integration in signaling networks. Finally, we will discuss how mitochondrial sirtuins regulate processes associated with aging and aging-related diseases.


Asunto(s)
Sirtuina 3 , Sirtuinas , Mitocondrias/genética , Mitocondrias/metabolismo , Fosfatidilinositol 3-Quinasas , Sirtuina 3/genética , Sirtuina 3/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
10.
Nat Aging ; 2(4): 303-316, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117743

RESUMEN

Apolipoprotein E (APOE) is a component of lipoprotein particles that function in the homeostasis of cholesterol and other lipids. Although APOE is genetically associated with human longevity and Alzheimer's disease, its mechanistic role in aging is largely unknown. Here, we used human genetic, stress-induced and physiological cellular aging models to explore APOE-driven processes in stem cell homeostasis and aging. We report that in aged human mesenchymal progenitor cells (MPCs), APOE accumulation is a driver for cellular senescence. By contrast, CRISPR-Cas9-mediated deletion of APOE endows human MPCs with resistance to cellular senescence. Mechanistically, we discovered that APOE functions as a destabilizer for heterochromatin. Specifically, increased APOE leads to the degradation of nuclear lamina proteins and a heterochromatin-associated protein KRAB-associated protein 1 via the autophagy-lysosomal pathway, thereby disrupting heterochromatin and causing senescence. Altogether, our findings uncover a role of APOE as an epigenetic mediator of senescence and provide potential targets to ameliorate aging-related diseases.


Asunto(s)
Apolipoproteínas E , Heterocromatina , Humanos , Anciano , Heterocromatina/genética , Apolipoproteínas E/genética , Senescencia Celular/genética , Envejecimiento/genética , Homólogo de la Proteína Chromobox 5 , Proteínas Nucleares/genética
11.
Elife ; 102021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33847264

RESUMEN

Aneuploidy causes birth defects and miscarriages, occurs in nearly all cancers and is a hallmark of aging. Individual aneuploid cells can be eliminated from developing tissues by unknown mechanisms. Cells with ribosomal protein (Rp) gene mutations are also eliminated, by cell competition with normal cells. Because Rp genes are spread across the genome, their copy number is a potential marker for aneuploidy. We found that elimination of imaginal disc cells with irradiation-induced genome damage often required cell competition genes. Segmentally aneuploid cells derived from targeted chromosome excisions were eliminated by the RpS12-Xrp1 cell competition pathway if they differed from neighboring cells in Rp gene dose, whereas cells with normal doses of the Rp and eIF2γ genes survived and differentiated adult tissues. Thus, cell competition, triggered by differences in Rp gene dose between cells, is a significant mechanism for the elimination of aneuploid somatic cells, likely to contribute to preventing cancer.


Aneuploid cells emerge when cellular division goes awry and a cell ends up with the wrong number of chromosomes, the tiny genetic structures carrying the instructions that control life's processes. Aneuploidy can lead to fatal conditions during development, and to cancer in an adult organism. A safety mechanism may exist that helps the body to detect and remove these cells. Yet, exactly this happens is still poorly understood: in particular, it is unclear how cells manage to 'count' their chromosomes. One way they could do so is through the ribosomes, the molecular 'factories' that create the building blocks required for life. In a cell, every chromosome carries genes that code for the proteins (known as Rps) forming ribosomes. Aneuploidy will alter the number of Rp genes, and in turn the amount and type of Rps the cell produces, so that ribosomes and the genes for Rps could act as a 'readout' of aneuploidy. Ji et al set out to test this theory in fruit flies. The first experiment used a genetic manipulation technique called site-specific recombination to remove parts of chromosomes from cells in the developing eye and wing. Cells which retained all their Rp genes survived, while those that were missing some usually died ­ but only when the surrounding cells were normal. In this situation, healthy cells eliminated their damaged neighbours through a process known as cell competition. A second experiment, using radiation as an alternative method of damaging chromosomes, also gave similar results. The work by Ji et al. reveals how the body can detect and eliminate aneuploid cells, potentially before they can cause harm. If the same mechanism applies in humans, boosting cell competition may, one day, helps to combat diseases like cancer.


Asunto(s)
Aneuploidia , Competencia Celular , Drosophila melanogaster/fisiología , Dosificación de Gen , Proteínas Ribosómicas/metabolismo , Animales , Drosophila melanogaster/crecimiento & desarrollo , Humanos , Discos Imaginales/crecimiento & desarrollo , Discos Imaginales/fisiología , Neoplasias/genética
12.
Dev Cell ; 46(4): 456-469.e4, 2018 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-30078730

RESUMEN

Ribosomes perform protein synthesis but are also involved in signaling processes, the full extent of which are still being uncovered. We report that phenotypes of mutating ribosomal proteins (Rps) are largely due to signaling. Using Drosophila, we discovered that a bZip-domain protein, Xrp1, becomes elevated in Rp mutant cells. Xrp1 reduces translation and growth, delays development, is responsible for gene expression changes, and causes the cell competition of Rp heterozygous cells from genetic mosaics. Without Xrp1, even cells homozygously deleted for Rp genes persist and grow. Xrp1 induction in Rp mutant cells depends on a particular Rp with regulatory effects, RpS12, and precedes overall changes in translation. Thus, effects of Rp mutations, even the reductions in translation and growth, depend on signaling through the Xrp1 pathway and are not simply consequences of reduced ribosome production limiting protein synthesis. One benefit of this system may be to eliminate Rp-mutant cells by cell competition.


Asunto(s)
Procesos de Crecimiento Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Animales , Drosophila/metabolismo , Homocigoto , Mutación/genética , Fenotipo , Biosíntesis de Proteínas/fisiología
13.
Dev Cell ; 44(1): 42-55.e4, 2018 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-29316439

RESUMEN

Wild-type Drosophila cells can remove cells heterozygous for ribosomal protein mutations (known as "Minute" mutant cells) from genetic mosaics, a process termed cell competition. The ribosomal protein S12 was unusual because cells heterozygous for rpS12 mutations were not competed by wild-type, and a viable missense mutation in rpS12 protected Minute cells from cell competition with wild-type cells. Furthermore, cells with Minute mutations were induced to compete with one another by altering the gene dose of rpS12, eliminating cells with more rpS12 than their neighbors. Thus RpS12 has a special function in cell competition that defines the competitiveness of cells. We propose that cell competition between wild-type and Minute cells is initiated by a signal of ribosomal protein haploinsufficiency mediated by RpS12. Since competition between cells expressing different levels of Myc did not require RpS12, other kinds of cell competition may be initiated differently.


Asunto(s)
Comunicación Celular , Fenómenos Fisiológicos Celulares , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Mutación , Proteínas Ribosómicas/metabolismo , Animales , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas Ribosómicas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA