Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Interdiscip Sci ; 14(2): 532-544, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35103919

RESUMEN

This work aims to exploit a novel graph neural network to predict the sex of the brain topological network, and to find the sex differences in the cerebrum and cerebellum. A two-branch multi-scale graph convolutional network (TMGCN) is designed to analyze the sex differences of the brain. Two complementary templates are used to construct cerebrum and cerebellum networks, respectively, followed by a two-branch sub-network with multi-scale filters and a trainable weighted fusion strategy for the final prediction. Finally, a trainable graph topk-pooling layer is utilized in our model to visualize key brain regions relevant to the prediction. The proposed TMGCN achieves a prediction accuracy of 84.48%. In the cerebellum, the bilateral Crus I-II, lobule VI and VIIb, and the posterior vermis (VI-X) are discriminative for this task. As for the cerebrum, the discriminative brain regions consist of the bilateral inferior temporal gyrus, the bilateral fusiform gyrus, the bilateral parahippocampal gyrus, the bilateral cingulate gyrus, the bilateral medial ventral occipital cortex, the bilateral lateral occipital cortex, the bilateral amygdala, and the bilateral hippocampus. This study tackles the sex prediction problem from a more comprehensive view, and may provide the resting-state fMRI evidence for further study of sex differences in the cerebellum and cerebrum.


Asunto(s)
Cerebro , Caracteres Sexuales , Encéfalo/diagnóstico por imagen , Cerebelo , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
2.
Front Psychol ; 12: 717519, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34526937

RESUMEN

Methamphetamine (MA) can cause brain structural and functional impairment, but there are few studies on whether this difference will sustain on MA abstainers. The purpose of this study is to investigate the correlation of brain networks in MA abstainers. In this study, 47 people detoxified for at least 14 months and 44 normal people took a resting-state functional magnetic resonance imaging (RS-fMRI) scan. A dynamic (i.e., time-varying) functional connectivity (FC) is obtained by applying sliding windows in the time courses on the independent components (ICs). The windowed correlation data for each IC were then clustered by k-means. The number of subjects in each cluster was used as a new feature for individual identification. The results show that the classifier achieved satisfactory performance (82.3% accuracy, 77.7% specificity, and 85.7% sensitivity). We find that there are significant differences in the brain networks of MA abstainers and normal people in the time domain, but the spatial differences are not obvious. Most of the altered functional connections (time-varying) are identified to be located at dorsal default mode network. These results have shown that changes in the correlation of the time domain may play an important role in identifying MA abstainers. Therefore, our findings provide valuable insights in the identification of MA and elucidate the pathological mechanism of MA from a resting-state functional integration point of view.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA