Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(12): e2308472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946668

RESUMEN

Given its exceptional theoretical energy density (over 2000 Wh kg-1), lithium||carbon fluoride (Li||CFx) battery has garnered global attention. N-methylpyrrolidone (NMP)-based electrolyte is regarded as one promising candidate for tremendously enhancing the energy density of Li||CFx battery, provided self-discharge challenges can be resolved. This study successfully achieves a low self-discharge (LSD) and desirable electrochemical performance in Li||CFx batteries at high temperatures by utilizing NMP as the solvent and incorporating additional ingredients, including vinylene carbonate additive, as well as the dual-salt systems formed by LiBF4 with three different Li salts, namely lithium bis(oxalato)borate, lithium difluoro(oxalato)borate, and LiNO3. The experimental results unfold that the proposed methods not only minimize aluminum current collector corrosion, but also effectively passivate the Li metal anode. Among them, LiNO3 exhibits the most pronounced effect that achieves an energy density of ≈2400 Wh kg-1 at a current density of 10 mA g-1 at 30 °C, nearly 0% capacity-fade rate after 300 h of storage at 60 °C, and the capability to maintain a stable open-circuit voltage over 4000 h. This work provides a distinctive perspective on how to realize both high energy density and LSD rates at high temperature of Li||CFx battery.

2.
J Am Chem Soc ; 141(12): 4972-4979, 2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30839207

RESUMEN

Few-layered exfoliated black phosphorus (EBP) has attracted surging interest for electronics, optoelectronics, and catalysis. As compared to excellent progress in electronic and optoelectronic applications, very few reports are available for electrocatalysis by metal-free EBPs. Herein, we couple solution-processable ultrathin EBP nanosheets with higher Fermi level of N-doped graphene (NG) into a new metal-free 2D/2D heterostructure (EBP@NG) with well-designed interfaces and unique electronic configuration, as efficient and durable bifunctional catalysts toward hydrogen evolution and oxygen evolution reactions (HER/OER) for overall water splitting in alkaline media. By rational interface engineering, the synergy of EBP and NG is fully exploited, which not only improves the stability of EBP, but also effectively modulates electronic structures of each component to boost their intrinsic activities. Specifically, due to the lower Fermi level of EBP relative to NG, their electronic interaction induces directional interfacial electron transfer, which not only enriches the electron density over EBP and optimizes H adsorption/desorption to promote HER, but also introduces abundant positively charged carbon sites on NG and provides favorable formation of key OER intermediates (OOH*) to improve OER energetics. Thus, despite that pure EBP or NG alone has poor or negligible activity, EBP@NG achieves remarkably enhanced bifunctional HER/OER activities, along with an excellent durability. This endows an optimized electrolyzer using EBP@NG as anode and cathode with a low cell voltage of 1.54 V at 10 mA cm-2, which is smaller than that of the costly integrated Pt/C@RuO2 couple (1.60 V).

3.
Angew Chem Int Ed Engl ; 58(45): 16217-16222, 2019 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-31424611

RESUMEN

A combined surface and dual electronic modulation strategy is used to realize metal-free all-pH catalysis towards the hydrogen evolution reaction (HER) by coupling a N-doped carbon framework (MHCF, electron acceptors) derived from MOFs with higher-Fermi-level pure carbon nanotubes (CNTs, electron donors), followed by surface modification with carboxyl-group-rich polymers. Although the three constituents are inactive, as-assembled ternary membranes yield superior HER performance with low overpotentials and high durability (≤5 % activity loss over 100 h) at all pH values. The C adjacent to pyrrolic N in MHCF is the most active site and the induced directional interfacial electron transfer from CNTs to MHCF coupled with N-driven intramolecular electron transfer in MHCF optimizes Gibbs free energy for hydrogen adsorption (ΔGH* ) near zero, while the polymer modulation enables local H+ enrichment in acidic media and enhanced water adsorption and activation in neutral and basic media.

4.
ACS Appl Mater Interfaces ; 13(48): 57470-57480, 2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34816716

RESUMEN

Elevating the discharge voltage plateau is regarded as the most effective strategy to improve the energy density of Li||CFx batteries in consideration of the finite capacity of CFx (x ∼ 1) cathodes. Here, an electrolyte, with LiBF4 in 1,3-dimethyl-2-imidazolidinone (DMI)/1,2-dimethoxyethane (DME), is developed for the first time to substantially promote the discharge voltage of CFx without compromising the available discharge capacity. DME possesses the property of low viscosity, while DMI functions to increase the voltage plateau during discharge owing to its moderate nucleophilicity and donor number, which decreases the energy barrier for breaking C-F bonds. The optimized electrolyte exhibits a significantly high average discharge voltage of 2.69 V at a current density of 10 mA g-1, which is 11.6% higher than the control electrolyte (2.41 V). In addition, a high energy density of 2099 Wh kg-1 is achieved in the optimized electrolyte (vs 1905 Wh kg-1 in the control electrolyte), showing great potential for practical applications.

5.
Adv Sci (Weinh) ; 7(12): 1902988, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32596107

RESUMEN

Covalent organic frameworks (COFs) are potential photocatalysts for artificial photosynthesis but they are much less explored for photocatalytic hydrogen evolution (PHE). COFs, while intriguing due to crystallinity, tunability, and porosity, tend to have low apparent quantum efficiency (AQE) and little is explored on atomistic structure-performance correlation. Here, adopting triphenylbenzene knots and phenyl linkers as a proof of concept, three structurally related COFs with different linkages are constructed to achieve a tunable COF platform and probe the effect of the linkage chemistry on PHE. Cyano-substituted alkene-linked COF (COF-alkene) yields a stable 2330 µmol h-1 g-1 PHE rate, much superior to imine- and imide-linked counterparts (<40 µmol h-1 g-1) under visible light irradiation. Impressively, COF-alkene achieves an AQE of 6.7% at 420 nm. Combined femtosecond transient absorption spectroscopy and theoretical calculation disclose the critical role of cyano-substituted alkene linkages toward high efficiency of charge separation and transfer in the presence of sacrificial electron donors-the decisive key to the superior PHE performance. Such alkene linkages can also be extended to design a series of high-performance polymeric photocatalysts, highlighting a general design idea for efficient PHE.

7.
Adv Sci (Weinh) ; 5(12): 1800760, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30581696

RESUMEN

An in situ strategy to simultaneously boost oxygen reduction and oxygen evolution (ORR/OER) activities of commercial carbon textiles is reported and the direct use of such ubiquitous raw material as low-cost, efficient, robust, self-supporting, and bifunctional air electrodes in rechargeable Zn-air batteries is demonstrated. This strategy not only furnishes carbon textiles with a large surface area and hierarchical meso-microporosity, but also enables efficient dual-doping of N and S into carbon skeletons while retaining high conductivity and stable monolithic structures. Thus, although original carbon textile has rather poor catalytic activity, the activated textiles without loading other active materials yield effective ORR/OER bifunctionality and stability with a much lower reversible overpotential (0.87 V) than those of Pt/C (1.10 V) and RuO2 (1.02 V) and many reported metal-free bifunctional catalysts. Importantly, they can concurrently function as current collectors and as ORR/OER catalysts for rechargeable aqueous and flexible solid-state Zn-air batteries, showing excellent cell performance, long lifetime, and high flexibility.

8.
ACS Appl Mater Interfaces ; 7(41): 23205-15, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26439604

RESUMEN

The vulnerable restacking problem of tin disulfide (SnS2) usually leads to poor initial reversible capacity and poor cyclic stability, which hinders its practical application as lithium ion battery anode (LIB). In this work, we demonstrated an effective strategy to improve the first reversible capacity and lithium storage properties of SnS2 by growing SnS2 nanosheets on porous flexible vanadium nitride (VN) substrates. When evaluating lithium-storage properties, the three-dimensional (3D) porous VN coated SnS2 nanosheets (denoted as CC-VN@SnS2) yield a high reversible capacity of 75% with high specific capacity of about 819 mAh g(-1) at a current density of 0.65 A g(-1). Remarkable cyclic stability capacity of 791 mAh g(-1) after 100 cycles with excellent capacity retention of 97% was also achieved. Furthermore, discharge capacity as high as 349 mAh g(-1) is still retained after 70 cycles even at a elevated current density of 13 A g(-1). The excellent performance was due to the conductive flexible VN substrate support, which provides short Li-ion and electron pathways, accommodates large volume variation, contributes to the capacity, and provides mechanical stability, which allows the electrode to maintain its structural stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA