Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Protein Expr Purif ; 203: 106209, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36460227

RESUMEN

CD1E, one of the most important glycolipid antigens on T cell membranes, is required for glycolipid antigen presentation on the cell surface. Cell-based recombinant expression systems have many limitations for synthesizing transmembrane proteins such as CD1E, including low protein yields and miss folding. To overcome these challenges, here we successfully synthesized high-quality soluble CD1E using an E.coli cell-free protein synthesis system (CFPS) with the aid of detergent. Following purification by Ni2+ affinity chromatography, we were able to obtain CD1E with ≥90% purity. Furthermore, we used the string website to predict the protein interaction network of CD1E and identified a potential binding partner━B2M. Similarly, we synthesized soluble B2M in the E.coli CFPS. Finally, we verified the interaction between CD1E and B2M by using Surface Plasmon Resonance (SPR). Taken together, the methods described here provide an alternative way to obtain active transmembrane protein and may facilitate future structural and functional studies on CD1E.


Asunto(s)
Glucolípidos , Proteínas de la Membrana , Glucolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Membrana Celular/metabolismo , Sistema Libre de Células/metabolismo
2.
Biochim Biophys Acta ; 1838(2): 643-57, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23732235

RESUMEN

The CLIC proteins are a highly conserved family of metazoan proteins with the unusual ability to adopt both soluble and integral membrane forms. The physiological functions of CLIC proteins may include enzymatic activity in the soluble form and anion channel activity in the integral membrane form. CLIC proteins are associated with the ERM proteins: ezrin, radixin and moesin. ERM proteins act as cross-linkers between membranes and the cortical actin cytoskeleton. Both CLIC and ERM proteins are controlled by Rho family small GTPases. CLIC proteins, ERM and Rho GTPases act in a concerted manner to control active membrane processes including the maintenance of microvillar structures, phagocytosis and vesicle trafficking. All of these processes involve the interaction of membranes with the underlying cortical actin cytoskeleton. The relationships between Rho GTPases, CLIC proteins, ERM proteins and the membrane:actin cytoskeleton interface are reviewed. Speculative models are proposed involving the formation of localised multi-protein complexes on the membrane surface that assemble via multiple weak interactions. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Animales , Humanos
3.
J Cell Sci ; 125(Pt 22): 5479-88, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956539

RESUMEN

Intracellular chloride channel protein 1 (CLIC1) is a 241 amino acid protein of the glutathione S transferase fold family with redox- and pH-dependent membrane association and chloride ion channel activity. Whilst CLIC proteins are evolutionarily conserved in Metazoa, indicating an important role, little is known about their biology. CLIC1 was first cloned on the basis of increased expression in activated macrophages. We therefore examined its subcellular localisation in murine peritoneal macrophages by immunofluorescence confocal microscopy. In resting cells, CLIC1 is observed in punctate cytoplasmic structures that do not colocalise with markers for endosomes or secretory vesicles. However, when these macrophages phagocytose serum-opsonised zymosan, CLIC1 translocates onto the phagosomal membrane. Macrophages from CLIC1(-/-) mice display a defect in phagosome acidification as determined by imaging live cells phagocytosing zymosan tagged with the pH-sensitive fluorophore Oregon Green. This altered phagosomal acidification was not accompanied by a detectable impairment in phagosomal-lysosomal fusion. However, consistent with a defect in acidification, CLIC1(-/-) macrophages also displayed impaired phagosomal proteolytic capacity and reduced reactive oxygen species production. Further, CLIC1(-/-) mice were protected from development of serum transfer induced K/BxN arthritis. These data all point to an important role for CLIC1 in regulating macrophage function through its ion channel activity and suggest it is a suitable target for the development of anti-inflammatory drugs.


Asunto(s)
Ácidos/metabolismo , Canales de Cloruro/metabolismo , Macrófagos Peritoneales/metabolismo , Fagosomas/metabolismo , Animales , Artritis/metabolismo , Artritis/patología , Proteínas del Citoesqueleto/metabolismo , Glicolatos/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Membranas Intracelulares/efectos de los fármacos , Membranas Intracelulares/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/enzimología , Proteínas de la Membrana/metabolismo , Ratones , Proteínas de Microfilamentos/metabolismo , NADPH Oxidasas/metabolismo , Fagosomas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteolisis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína RCA2 de Unión a GTP
4.
Nat Med ; 13(11): 1333-40, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17982462

RESUMEN

Anorexia and weight loss are part of the wasting syndrome of late-stage cancer, are a major cause of morbidity and mortality in cancer, and are thought to be cytokine mediated. Macrophage inhibitory cytokine-1 (MIC-1) is produced by many cancers. Examination of sera from individuals with advanced prostate cancer showed a direct relationship between MIC-1 abundance and cancer-associated weight loss. In mice with xenografted prostate tumors, elevated MIC-1 levels were also associated with marked weight, fat and lean tissue loss that was mediated by decreased food intake and was reversed by administration of antibody to MIC-1. Additionally, normal mice given systemic MIC-1 and transgenic mice overexpressing MIC-1 showed hypophagia and reduced body weight. MIC-1 mediates its effects by central mechanisms that implicate the hypothalamic transforming growth factor-beta receptor II, extracellular signal-regulated kinases 1 and 2, signal transducer and activator of transcription-3, neuropeptide Y and pro-opiomelanocortin. Thus, MIC-1 is a newly defined central regulator of appetite and a potential target for the treatment of both cancer anorexia and weight loss, as well as of obesity.


Asunto(s)
Anorexia/metabolismo , Citocinas/fisiología , Familia de Multigenes/inmunología , Neoplasias de la Próstata/metabolismo , Pérdida de Peso , Animales , Anorexia/genética , Anorexia/inmunología , Anorexia/fisiopatología , Anticuerpos/administración & dosificación , Anticuerpos/fisiología , Línea Celular Tumoral , Citocinas/sangre , Citocinas/genética , Citocinas/inmunología , Factor 15 de Diferenciación de Crecimiento , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Desnudos , Ratones Transgénicos , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/fisiopatología , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/fisiología , Pérdida de Peso/genética , Pérdida de Peso/inmunología
5.
J Agric Food Chem ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37930796

RESUMEN

The Jasminum sambac flower is famous for its rich fragrance. However, our knowledge of the regulatory network for its aroma formation remains largely unknown and therefore needs further study. To this end, an integrated analysis of the volatilomics and transcriptomics of jasmine flowers at different flowering stages was performed. The results revealed many candidate transcription factors (TFs) may be involved in regulating the aroma formation of jasmine, among which the MYB-related TF LATE ELONGATED HYPOCOTYL (JsLHY) was identified as a hub gene. Using the DNA affinity purification sequencing method, dual-luciferase reporter, and yeast one-hybrid assays, we demonstrate that JsLHY can bind the gene promoter regions of six aroma-related structural genes (JsBEAT1, JsTPS34, JsCNL6, JsBPBT, JsAAAT5, and Js4CL7) and directly promote their expression. In addition, suppressing JsLHY expression decreased both the expression of JsLHY-bound genes and the content of related VOCs. The present study reveals how JsLHY participates in jasmine aroma formation.

6.
Plants (Basel) ; 13(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38202408

RESUMEN

Fujian province, an important tea-producing area in China, has abundant tea cultivars. To investigate the genetic relationships of tea plant cultivars in Fujian province and the characteristics of the tea plant varieties, a total of 70 tea cultivars from Fujian and other 12 provinces in China were subjected to restriction site-associated DNA sequencing (RAD-seq). A total of 60,258,975 single nucleotide polymorphism (SNP) sites were obtained. These 70 tea plant cultivars were divided into three groups based on analyzing the phylogenetic tree, principal component, and population structure. Selection pressure analysis indicated that nucleotide diversity was high in Southern China and genetically distinct from cultivars of Fujian tea plant cultivars, according to selection pressure analysis. The selected genes have significant enrichment in pathways associated with metabolism, photosynthesis, and respiration. There were ten characteristic volatiles screened by gas chromatography-mass spectrometry (GC-MS) coupled with multivariate statistical methods, among which the differences in the contents of methyl salicylate, 3-carene, cis-3-hexen-1-ol, (E)-4-hexen-1-ol, and 3-methylbutyraldehyde can be used as reference indicators of the geographical distribution of tea plants. Furthermore, a metabolome genome-wide association study (mGWAS) revealed that 438 candidate genes were related to the aroma metabolic pathway. Further analysis showed that 31 genes of all the selected genes were screened and revealed the reasons for the genetic differences in aroma among tea plant cultivars in Fujian and Southern China. These results reveal the genetic diversity in the Fujian tea plants as well as a theoretical basis for the conservation, development, and utilization of the Fujian highly aromatic tea plant cultivars.

7.
Nephrol Dial Transplant ; 27(1): 70-5, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21940482

RESUMEN

BACKGROUND: Elevated macrophage inhibitory cytokine-1 (MIC-1/GDF15) levels in serum mediate anorexia and weight loss in some cancer patients and similarly elevated levels occur in chronic kidney disease (CKD). Serum MIC-1/GDF15 is also elevated in chronic inflammatory diseases and predicts atherosclerotic events independently of traditional risk factors. The relationship between chronic inflammation, decreasing body mass index (BMI) and increased mortality in CKD is not well understood and is being actively investigated. MIC-1/GDF15 may link these features of CKD. METHODS: Cohorts of incident dialysis patients from Sweden (n = 98) and prevalent hemodialysis patients from the USA (n = 381) had serum MIC-1/GDF15, C-reactive protein (CRP) levels and BMI measured at study entry. Additional surrogate markers of nutritional adequacy, body composition and inflammation were assessed in Swedish patients. Patients were followed for all-cause mortality. RESULTS: In the Swedish cohort, serum MIC-1/GDF15 was associated with decreasing BMI, measures of nutrition and markers of oxidative stress and inflammation. Additionally, high serum MIC-1/GDF15 levels identified patients with evidence of protein-energy wasting who died in the first 3 years of dialysis. The ability of serum MIC-1/GDF15 to predict mortality in the first 3 years of dialysis was confirmed in the USA cohort. In both cohorts, serum MIC-1/GDF15 level was an independent marker of mortality when adjusted for age, CRP, BMI, history of diabetes mellitus and/or cardiovascular disease and glomerular filtration rate or length of time on dialysis at study entry. CONCLUSIONS: MIC-1/GDF15 is a novel independent serum marker of mortality in CKD capable of significantly improving the mortality prediction of other established markers. MIC-1/GDF15 may mediate protein-energy wasting in CKD and represent a novel therapeutic target for this fatal complication.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Fallo Renal Crónico/metabolismo , Fallo Renal Crónico/mortalidad , Diálisis Renal/mortalidad , Proteína C-Reactiva/metabolismo , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Tasa de Filtración Glomerular , Humanos , Técnicas para Inmunoenzimas , Masculino , Persona de Mediana Edad , Factores de Riesgo , Tasa de Supervivencia , Suecia , Estados Unidos
8.
Sci Rep ; 12(1): 5194, 2022 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-35338166

RESUMEN

The effects of polycyclic aromatic hydrocarbons on phytoplankton have been extensively documented, but there is limited knowledge about the physiological responses of marine primary producers to phenanthrene at environmentally relevant levels. Here, we investigated the toxicity of phenanthrene (0, 1, and 5 or 10 µg L-1) to the physiological performance of two cosmopolitan phytoplankton species: the green alga Chlorella vulgaris and bloom-forming diatom Skeletonema costatum. The specific growth rates of both species were remarkably inhibited at both low (1 µg L-1) and high phenanthrene concentrations (5 or 10 µg L-1), while their tolerance to phenanthrene differed. At the highest phenanthrene concentration (10 µg L-1), the growth of C. vulgaris was inhibited by 69%, and no growth was observed for S. costatum cells. The superoxide dismutase activity of both species was enhanced at high phenanthrene concentration, and increased activity of catalase was only observed at high phenanthrene concentration in C. vulgaris. Interestingly, the low phenanthrene concentration stimulated the photosynthetic and relative electron transport rates of S. costatum, whereas hormetic effects were not found for growth. Based on our results, phenanthrene could be detrimental to these two species at a environmentally relevant level, while different tolerance levels were detected.


Asunto(s)
Chlorella vulgaris , Diatomeas , Fenantrenos , Fenantrenos/farmacología , Fotosíntesis , Fitoplancton
9.
Mar Environ Res ; 175: 105581, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35151949

RESUMEN

Extensive studies have documented the responses of diatoms to environmental drivers in the context of climate change. However, bloom dynamics are usually ignored in most studies. Here, we investigated the effects of the initial pCO2 on the bloom characteristics of two cosmopolitan diatoms, Skeletonema costatum and Thalassiosira weissflogii. Batch cultures with two initial pCO2 conditions (LC: 400 µatm; HC: 1000 µatm) were used to investigate bloom dynamics under current and ocean acidification scenarios. The simulated S. costatum bloom was characterized by fast accumulation, a rapid decline in biomass, and a shorter stationary phase. The T. weissflogii bloom had a longer stationary phase, and cell density remained at high levels after culturing for 19 days. The physiological performances of the two diatoms varied significantly in the different bloom phases. We found that the initial pCO2 has modulating effects on biomass accumulation and bloom dynamics for these two diatoms. The higher initial pCO2 enhanced the specific growth rate of T. weissflogii by 6% in the exponential phase, leading to higher cell densities, while 86% higher decay rates were observed in the HC cultures of S. costatum. Overall, ocean acidification may alter the dynamics of diatom blooms and may have profound impacts on the biological carbon pump.


Asunto(s)
Diatomeas , Técnicas de Cultivo Celular por Lotes , Dióxido de Carbono , Diatomeas/fisiología , Concentración de Iones de Hidrógeno , Agua de Mar
10.
Growth Factors ; 29(5): 187-95, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21831009

RESUMEN

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) is associated with cardiovascular disease, inflammation, body weight regulation and cancer. Its serum levels facilitate the diagnosis and prognosis of cancer and vascular disease. Furthermore, its serum levels are a powerful predictor of all-cause mortality, suggesting a fundamental role in biological processes associated with ageing. In cancer, the data available suggest that MIC-1/GDF15 is antitumorigenic, but this may not always be the case as disease progresses. Cancer promoting effects of MIC-1/GDF15 may be due, in part, to effects on antitumour immunity. This is suggested by the anti-inflammatory and immunosuppressive properties of MIC-1/GDF15 in animal models of atherosclerosis and rheumatoid arthritis. Furthermore, in late-stage cancer, large amounts of MIC-1/GDF15 in the circulation suppress appetite and mediate cancer anorexia/cachexia, which can be reversed by monoclonal antibodies in animals. Available data suggest MIC-1/GDF15 may be an important molecule mediating the interplay between cancer, obesity and chronic inflammation.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/metabolismo , Inflamación/metabolismo , Neoplasias/metabolismo , Envejecimiento , Animales , Anorexia/metabolismo , Anorexia/terapia , Biomarcadores , Caquexia/metabolismo , Caquexia/terapia , Enfermedades Cardiovasculares/metabolismo , Línea Celular Tumoral , Progresión de la Enfermedad , Factor 15 de Diferenciación de Crecimiento/sangre , Humanos , Ratones , Neoplasias/inmunología
11.
J Immunol ; 183(4): 2827-36, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19635903

RESUMEN

Ag-specific human CD4(+) memory T lymphocytes have mostly been studied using assays of proliferation in vitro. Intracellular cytokine and ELISPOT assays quantify effector cell populations but barely detect responses to certain recall Ags that elicit strong proliferative responses, e.g., tetanus toxoid, that comprise non-Th1 CD4(+) cells. We have found that culturing whole blood with Ag for 40-48 h induces specific CD4(+) T cells to simultaneously express CD25 and CD134. This new technique readily detects responses to well-described CD4(+) T cell recall Ags, including preparations of mycobacteria, CMV, HSV-1, influenza, tetanus toxoid, Candida albicans, and streptokinase, as well as HIV-1 peptides, with high specificity. The assay detects much higher levels of Ag-specific cells than intracellular cytokine assays, plus the cells retain viability and can be sorted for in vitro expansion. Furthermore, current in vitro assays for human CD4(+) memory T lymphocytes are too labor-intensive and difficult to standardize for routine diagnostic laboratories, whereas the whole-blood CD25(+)CD134(+) assay combines simplicity of setup with a straightforward cell surface flow cytometry readout. In addition to revealing the true extent of Ag-specific human CD4(+) memory T lymphocytes, its greatest use will be as a simple in vitro monitor of CD4(+) T cell responses to Ags such as tuberculosis infection or vaccines.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Subunidad alfa del Receptor de Interleucina-2/sangre , Activación de Linfocitos/inmunología , Receptores OX40/sangre , Adulto , Secuencia de Aminoácidos , Animales , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Enfermedad Crónica , Epítopos de Linfocito T/sangre , Fluoresceínas , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Humanos , Subunidad alfa del Receptor de Interleucina-2/biosíntesis , Estudios Longitudinales , Macaca nemestrina , Datos de Secuencia Molecular , Receptores OX40/biosíntesis , Succinimidas , Timidina , Tritio
12.
Mar Environ Res ; 169: 105396, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34171593

RESUMEN

The combined effects of polycyclic aromatic hydrocarbons and seawater acidification are poorly understood. Hence, we exposed the bloom-forming diatom Skeletonema costatum to four concentrations (0, 0.1, 1 and 10 µg L-1) of benzo(a)pyrene and two pCO2 levels (400 and 1000 µatm) to investigate its physiological performance. The growth and photosynthesis of S. costatum were tolerant to low and moderate benzo(a)pyrene concentrations regardless of the pCO2 level. However, the highest benzo(a)pyrene concentration had remarkably adverse effects on most parameters, decreasing the growth rate by 69%. Seawater acidification increased the sensitivity to high light stress, as shown by the lower maximum relative electron transport rate and light saturation point at the highest benzo(a)pyrene concentration. Our results suggested that benzo(a)pyrene could be detrimental to diatoms at a habitat-relevant level, and seawater acidification might further decrease its light tolerance, which would have important ramifications for the community structure and primary production in coastal waters.


Asunto(s)
Diatomeas , Benzo(a)pireno/toxicidad , Concentración de Iones de Hidrógeno , Fotosíntesis , Agua de Mar
13.
Genesis ; 48(2): 127-36, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20049953

RESUMEN

CLIC1 belongs to a family of highly conserved and widely expressed intracellular chloride ion channel proteins existing in both soluble and membrane integrated forms. To study the physiological and biological role of CLIC1 in vivo, we undertook conditional gene targeting to engineer Clic1 gene knock-out mice. This represents creation of the first gene knock-out of a vertebrate CLIC protein family member. We first generated a Clic1 Knock-in (Clic1(FN)) allele, followed by Clic1 knock-out (Clic1(-/-)) mice by crossing Clic1(FN) allele with TNAP-cre mice, resulting in germline gene deletion through Cre-mediated recombination. Mice heterozygous or homozygous for these alleles are viable and fertile and appear normal. However, Clic1(-) (/-) mice show a mild platelet dysfunction characterized by prolonged bleeding times and decreased platelet activation in response to adenosine diphosphate stimulation linked to P2Y(12) receptor signaling.


Asunto(s)
Canales de Cloruro/genética , Eliminación de Gen , Marcación de Gen/métodos , Ingeniería Genética , Modelos Genéticos , Alelos , Animales , Plaquetas/metabolismo , Cruzamientos Genéticos , Hemorragia , Heterocigoto , Homocigoto , Inmunohistoquímica , Integrasas/metabolismo , Ratones , Ratones Noqueados , Recombinación Genética
14.
J Vis Exp ; (166)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33369602

RESUMEN

Here we report a protocol to investigate the heat transfer between irradiated gold nanoparticles (GNPs) and bilayer lipid membranes by electrochemistry using tethered bilayer lipid membranes (tBLMs) assembled on gold electrodes. Irradiated modified GNPs, such as streptavidin-conjugated GNPs, are embedded in tBLMs containing target molecules, such as biotin. By using this approach, the heat transfer processes between irradiated GNPs and model bilayer lipid membrane with entities of interest are mediated by a horizontally focused laser beam. The thermal predictive computational model is used to confirm the electrochemically induced conductance changes in the tBLMs. Under the specific conditions used, detecting heat pulses required specific attachment of the gold nanoparticles to the membrane surface, while unbound gold nanoparticles failed to elicit a measurable response. This technique serves as a powerful detection biosensor which can be directly utilized for the design and development of strategies for thermal therapies that permits optimization of the laser parameters, particle size, particle coatings and composition.


Asunto(s)
Oro/química , Calor , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Nanopartículas del Metal/química , Conductividad Eléctrica
15.
Biochim Biophys Acta Biomembr ; 1862(9): 183334, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32380171

RESUMEN

Plasmon resonance frequency irradiated gold nanoparticles (GNPs) have gained interest as a laser-targeted treatment for infections, tumors and for the controlled release of drugs in situ. Questions still remain, however, as to the efficiency of heat delivery within biological tissues and how this can be reliably determined. Here, we demonstrate how a nanomaterial-electrode interface that mimics cell membranes can detect the localized heat transfer characteristics arising from plasmon resonance frequency-matched laser excitation of GNPs. We demonstrate that the lipid bilayer membrane can be affected by conjugated GNP induced hyperthermia when irradiated with a laser power output as low as 135 nW/µm2. This is four orders of magnitude lower power than previously reported. By restricting the lateral movement of the lipids in the bilayer membrane, it was shown that the change in membrane conductance as a result of the heat transfer was due to the creation of transient lipidic toroidal pores within the membrane. We further demonstrate that the heat transfer from the GNPs alters diffusion rates of monomers of the gramicidin-A peptide within the lipid leaflets. This work highlights how targeted low laser power GNP hyperthermia treatments, in vivo, could play a dual role of interfering with both cell membrane morphology and dynamics, along with membrane protein function.


Asunto(s)
Gramicidina/química , Membrana Dobles de Lípidos/química , Nanopartículas del Metal/química , Péptidos/química , Membrana Celular/química , Membrana Celular/metabolismo , Oro/química , Gramicidina/metabolismo , Calor , Membrana Dobles de Lípidos/metabolismo , Péptidos/metabolismo , Proteínas
16.
J Neurosci ; 28(45): 11488-99, 2008 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-18987185

RESUMEN

The Alzheimer's disease (AD) brain is characterized by plaques containing beta-amyloid (Abeta) protein surrounded by astrocytes and reactive microglia. Activation of microglia by Abeta initiates production of reactive oxygen species (ROS) by the plasmalemmal NADPH oxidase; the resultant oxidative stress is thought to contribute to neurodegeneration in AD. We have previously shown that Abeta upregulates a chloride current mediated by the chloride intracellular channel 1 (CLIC1) protein in microglia. We now demonstrate that Abeta promotes the acute translocation of CLIC1 from the cytosol to the plasma membrane of microglia, where it mediates a chloride conductance. Both the Abeta induced Cl(-) conductance and ROS generation were prevented by pharmacological inhibition of CLIC1, by replacement of chloride with impermeant anions, by an anti-CLIC1 antibody and by suppression of CLIC1 expression using siRNA. Thus, the CLIC1-mediated Cl(-) conductance is required for Abeta-induced generation of neurotoxic ROS by microglia. Remarkably, CLIC1 activation is itself dependent on oxidation by ROS derived from the activated NADPH oxidase. We therefore propose that CLIC1 translocation from the cytosol to the plasma membrane, in response to redox modulation by NADPH oxidase-derived ROS, provides a feedforward mechanism that facilitates sustained microglial ROS generation by the NAPDH oxidase.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Encéfalo/citología , Canales de Cloruro/fisiología , Microglía/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Anticuerpos/farmacología , Encéfalo/metabolismo , Células Cultivadas , Canales de Cloruro/inmunología , Glicolatos/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Humanos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Ratones , Ratones Transgénicos , Mutación/fisiología , Técnicas de Placa-Clamp , Presenilina-1/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , ARN Interferente Pequeño/farmacología , Ratas , Proteínas tau/genética
17.
Biol Open ; 5(5): 620-30, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27113959

RESUMEN

Intracellular chloride channel protein 1 (CLIC1) participates in inflammatory processes by regulating macrophage phagosomal functions such as pH and proteolysis. Here, we sought to determine if CLIC1 can regulate adaptive immunity by actions on dendritic cells (DCs), the key professional antigen presenting cells. To do this, we first generated bone marrow-derived DCs (BMDCs) from germline CLIC1 gene-deleted (CLIC1(-/-)) and wild-type (CLIC1(+/+)) mice, then studied them in vitro and in vivo We found phagocytosis triggered cytoplasmic CLIC1 translocation to the phagosomal membrane where it regulated phagosomal pH and proteolysis. Phagosomes from CLIC1(-/-) BMDCs displayed impaired acidification and proteolysis, which could be reproduced if CLIC1(+/+), but not CLIC1(-/-) cells, were treated with IAA94, a CLIC family ion channel blocker. CLIC1(-/-) BMDC displayed reduced in vitro antigen processing and presentation of full-length myelin oligodendrocyte glycoprotein (MOG) and reduced MOG-induced experimental autoimmune encephalomyelitis. These data suggest that CLIC1 regulates DC phagosomal pH to ensure optimal processing of antigen for presentation to antigen-specific T-cells. Further, they indicate that CLIC1 is a novel therapeutic target to help reduce the adaptive immune response in autoimmune diseases.

18.
Int J Cardiol ; 98(2): 291-7, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15686781

RESUMEN

BACKGROUND: It has been suggested that gap-junctional conductance between cardiomyocytes is regulated through a specific ligand-receptor interaction between ATP and connexins. In this study we examined the localization of P2X1 ionotropic receptors and their relation to connexin43 in gap junctions in human left ventricles. METHODS AND RESULTS: Using immunohistochemistry, we detected P2X1 expression predominantly in the intercalated discs. Labelling of the P2X1 receptor and the gap junction protein connexin43 showed close association in some gap junctions, while in others the two proteins often appeared to be spatially discrete. Western blotting detected four major bands at 45, 60, 95 and 120 kDa in the protein extracts from human left ventricles corresponding to equivalent bands from rat vas deferens. The most prominent band in human left ventricles was at 95 kDa, possibly a dimer of the native P2X1 receptor, whereas in rat vas deferens it was at 60 kDa. After preincubation of the antibody with its epitope peptide, the 45 and 60 kDa bands almost disappeared and the 95 and 120 kDa bands were significantly attenuated. CONCLUSIONS: P2X1 receptors in human myocardium are densely localized in gap junctions at intercalated discs between muscle cells. Close association of P2X1 receptors and connexin 43 occurred in some regions of some gap junctions, but in others they were spatially separate. Little difference in the pattern of distribution of P2X1 receptors was found in failing left ventricles of patients with dilated cardiomyopathy, although Western blots showed an enhancement of P2X1 receptor protein.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Conexina 43/metabolismo , Uniones Comunicantes/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Purinérgicos P2/fisiología , Adulto , Anciano , Western Blotting , Ventrículos Cardíacos/metabolismo , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Receptores Purinérgicos P2X
19.
PLoS One ; 9(6): e100370, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24971956

RESUMEN

Macrophage inhibitory cytokine-1 (MIC-1/GDF15) modulates food intake and body weight under physiological and pathological conditions by acting on the hypothalamus and brainstem. When overexpressed in disease, such as in advanced cancer, elevated serum MIC-1/GDF15 levels lead to an anorexia/cachexia syndrome. To gain a better understanding of its actions in the brainstem we studied MIC-1/GDF15 induced neuronal activation identified by induction of Fos protein. Intraperitoneal injection of human MIC-1/GDF15 in mice activated brainstem neurons in the area postrema (AP) and the medial (m) portion of the nucleus of the solitary tract (NTS), which did not stain with tyrosine hydroxylase (TH). To determine the importance of these brainstem nuclei in the anorexigenic effect of MIC-1/GDF15, we ablated the AP alone or the AP and the NTS. The latter combined lesion completely reversed the anorexigenic effects of MIC-1/GDF15. Altogether, this study identified neurons in the AP and/or NTS, as being critical for the regulation of food intake and body weight by MIC-1/GDF15.


Asunto(s)
Depresores del Apetito/farmacología , Área Postrema/efectos de los fármacos , Área Postrema/fisiología , Factor 15 de Diferenciación de Crecimiento/farmacología , Núcleo Solitario/efectos de los fármacos , Núcleo Solitario/fisiología , Animales , Anorexia/inducido químicamente , Depresores del Apetito/administración & dosificación , Factor 15 de Diferenciación de Crecimiento/administración & dosificación , Infusiones Intraventriculares , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Pérdida de Peso/efectos de los fármacos
20.
PLoS One ; 8(2): e55174, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23468844

RESUMEN

The TGF-b superfamily cytokine MIC-1/GDF15 circulates in all humans and when overproduced in cancer leads to anorexia/cachexia, by direct action on brain feeding centres. In these studies we have examined the role of physiologically relevant levels of MIC-1/GDF15 in the regulation of appetite, body weight and basal metabolic rate. MIC-1/GDF15 gene knockout mice (MIC-1(-/-)) weighed more and had increased adiposity, which was associated with increased spontaneous food intake. Female MIC-1(-/-) mice exhibited some additional alterations in reduced basal energy expenditure and physical activity, possibly owing to the associated decrease in total lean mass. Further, infusion of human recombinant MIC-1/GDF15 sufficient to raise serum levels in MIC-1(-/-) mice to within the normal human range reduced body weight and food intake. Taken together, our findings suggest that MIC-1/GDF15 is involved in the physiological regulation of appetite and energy storage.


Asunto(s)
Apetito/genética , Peso Corporal/genética , Factor 15 de Diferenciación de Crecimiento/genética , Tejido Adiposo/crecimiento & desarrollo , Animales , Apetito/fisiología , Peso Corporal/fisiología , Ingestión de Alimentos , Metabolismo Energético/genética , Femenino , Genotipo , Factor 15 de Diferenciación de Crecimiento/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Tamaño de los Órganos , Factores Sexuales , Transducción de Señal , Aumento de Peso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA