Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Bioprocess Biosyst Eng ; 46(11): 1677-1693, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37878184

RESUMEN

The quality prediction of batch processes is an important task in the field of biological fermentation. However, dynamic nonlinearity, unequal sampling intervals, uneven duration, and multiple features of a batch process make this task challenging. Thus, the multiple-feature fusion transformer (MFFT) model is proposed for the time series quality prediction of a batch process. First, the application of sequence-to-sequence architecture enables MFFT to perform a wide range of sequence prediction tasks. Second, the transformer parallel operation model imposes no rigid requirement for the order of sequence input, allowing the model to deal with problems of unequal interval sampling and utilize the sequence information. Third, MFFT integrates a pretrained ResNet50 as a mycelium status classifier for fusing image information into the features. Moreover, a multiple-feature encoding structure is proposed to integrate sampling time and mycelium status. Finally, multiple tasks in penicillin fermentation have shown that MFFT significantly outperforms existing methods for time series prediction.


Asunto(s)
Micelio , Penicilinas , Fermentación , Factores de Tiempo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37022853

RESUMEN

Root cause diagnosis of process industry is of significance to ensure safe production and improve production efficiency. Conventional contribution plot methods have challenges in root cause diagnosis due to the smearing effect. Other traditional root cause diagnosis methods, such as Granger causality (GC) and transfer entropy, have unsatisfactory performance in root cause diagnosis for complex industrial processes due to the existence of indirect causality. In this work, a regularization and partial cross mapping (PCM)-based root cause diagnosis framework is proposed for efficient direct causality inference and fault propagation path tracing. First, generalized Lasso-based variable selection is performed. The Hotelling T2 statistic is formulated and the Lasso-based fault reconstruction is applied to select candidate root cause variables. Second, the root cause is diagnosed through the PCM and the propagation path is drawn out according to the diagnosis result. The proposed framework is studied in four cases to verify its rationality and effectiveness, including a numerical example, the Tennessee Eastman benchmark process, the wastewater treatment process (WWTP), and the decarburization process of high-speed wire rod spring steel.

3.
Int J Surg ; 109(12): 3848-3860, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37988414

RESUMEN

BACKGROUND: The early detection of high-grade prostate cancer (HGPCa) is of great importance. However, the current detection strategies result in a high rate of negative biopsies and high medical costs. In this study, the authors aimed to establish an Asian Prostate Cancer Artificial intelligence (APCA) score with no extra cost other than routine health check-ups to predict the risk of HGPCa. PATIENTS AND METHODS: A total of 7476 patients with routine health check-up data who underwent prostate biopsies from January 2008 to December 2021 in eight referral centres in Asia were screened. After data pre-processing and cleaning, 5037 patients and 117 features were analyzed. Seven AI-based algorithms were tested for feature selection and seven AI-based algorithms were tested for classification, with the best combination applied for model construction. The APAC score was established in the CH cohort and validated in a multi-centre cohort and in each validation cohort to evaluate its generalizability in different Asian regions. The performance of the models was evaluated using area under the receiver operating characteristic curve (ROC), calibration plot, and decision curve analyses. RESULTS: Eighteen features were involved in the APCA score predicting HGPCa, with some of these markers not previously used in prostate cancer diagnosis. The area under the curve (AUC) was 0.76 (95% CI:0.74-0.78) in the multi-centre validation cohort and the increment of AUC (APCA vs. PSA) was 0.16 (95% CI:0.13-0.20). The calibration plots yielded a high degree of coherence and the decision curve analysis yielded a higher net clinical benefit. Applying the APCA score could reduce unnecessary biopsies by 20.2% and 38.4%, at the risk of missing 5.0% and 10.0% of HGPCa cases in the multi-centre validation cohort, respectively. CONCLUSIONS: The APCA score based on routine health check-ups could reduce unnecessary prostate biopsies without additional examinations in Asian populations. Further prospective population-based studies are warranted to confirm these results.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Inteligencia Artificial , Clasificación del Tumor , Medición de Riesgo/métodos , Neoplasias de la Próstata/diagnóstico , Biopsia , Curva ROC
4.
ACS Omega ; 7(45): 41069-41081, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36406484

RESUMEN

Batch processes are generally characterized by complex dynamics and remarkable data collinearity, thereby rendering the monitoring of such processes necessary but challenging. This paper proposes a data-driven time-slice latent variable correlation analysis-based model predictive fault detection framework to ensure accurate fault detection in dynamic batch processes. The three-way batch process data are first unfolded into the two-way time slice. For each single time slice, process data are mapped to both major latent variables and residual subspaces to deal with the variable-wise data collinearity and extract dominant data information. A measurement status is then determined with a canonical correlation analysis of the major latent variables and correlated variables, using both the time and batch perspectives. Prediction-based residuals are generated, which provide the basis for identifying the property of faults detected, namely, static or dynamic. Based on experiments using a simulated penicillin production and an industrial inject molding process, the proposed monitoring scheme has been proven feasible and effective.

5.
IEEE Trans Neural Netw Learn Syst ; 32(8): 3355-3365, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32324574

RESUMEN

Industrial big data and complex process nonlinearity have introduced new challenges in plant-wide process monitoring. This article proposes a local-global modeling and distributed computing framework to achieve efficient fault detection and isolation for nonlinear plant-wide processes. First, a stacked autoencoder is used to extract dominant representations of each local process unit and establish the local inner monitor. Second, mutual information (MI) is used to determine the neighborhood variables of a local unit. Afterward, a joint representation learning is then performed between the local unit and the neighborhood variables to extract the outer-related representations and establish the outer-related monitor for the local unit. Finally, the outer-related representations from all process units are used to establish global monitoring systems. Given that the modeling of each unit can be performed individually, the computation process can be efficiently completed with different CPUs. The proposed modeling and monitoring method is applied to the Tennessee Eastman (TE) and laboratory-scale glycerol distillation processes to demonstrate the feasibility of the method.

6.
Nat Commun ; 12(1): 2618, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976195

RESUMEN

Non-Markovian models of stochastic biochemical kinetics often incorporate explicit time delays to effectively model large numbers of intermediate biochemical processes. Analysis and simulation of these models, as well as the inference of their parameters from data, are fraught with difficulties because the dynamics depends on the system's history. Here we use an artificial neural network to approximate the time-dependent distributions of non-Markovian models by the solutions of much simpler time-inhomogeneous Markovian models; the approximation does not increase the dimensionality of the model and simultaneously leads to inference of the kinetic parameters. The training of the neural network uses a relatively small set of noisy measurements generated by experimental data or stochastic simulations of the non-Markovian model. We show using a variety of models, where the delays stem from transcriptional processes and feedback control, that the Markovian models learnt by the neural network accurately reflect the stochastic dynamics across parameter space.


Asunto(s)
Regulación de la Expresión Génica , Modelos Genéticos , Redes Neurales de la Computación , Simulación por Computador , Retroalimentación Fisiológica , Cinética , Procesos Estocásticos , Transcripción Genética
7.
ISA Trans ; 107: 360-369, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32768133

RESUMEN

Correlated representation learning has found wide usage in process monitoring. However, slow and normal changes frequently occur in practical production processes, which may lead to model mismatch and degrade monitoring performance. Therefore, updating the monitoring model online and involving recently processed data information are important. This study proposes a recursive correlated representation learning (RCRL) incorporating an approach for online model updating for adaptive monitoring of slowly varying processes. First, an initial canonical correlation analysis-based monitoring model is established using historical process data. Second, an online model updating criterion is developed, and updating procedures are provided to reflect online data information and update monitoring model in a timely manner. Then, monitoring statistics are established and decision making logic is established to identify process status. The fitness of the monitoring scheme is increased because the online process information is considered to update the model. The proposed RCRL-based monitoring scheme is applied on a numerical example and a lab-scale distillation process. The effectiveness and superiority of the RCRL approach are verified.

8.
ISA Trans ; 64: 342-352, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27161755

RESUMEN

Existing phase-based batch or fed-batch process monitoring strategies generally have two problems: (1) phase number, which is difficult to determine, and (2) uneven length feature of data. In this study, a multiple-phase online sorting principal component analysis modeling strategy (MPOSPCA) is proposed to monitor multiple-phase batch processes online. Based on all batches of off-line normal data, a new multiple-phase partition algorithm is proposed, where k-means and a defined average Euclidean radius are employed to determine the multiple-phase data set and phase number. Principal component analysis is then applied to build the model in each phase, and all the components are retained. In online monitoring, the Euclidean distance is used to select the monitoring model. All the components undergo online sorting through a parameter defined by Bayesian inference (BI). The first several components are retained to calculate the T(2) statistics. Finally, the respective probability indices of [Formula: see text] is obtained using BI as the moving average strategy. The feasibility and effectiveness of MPOSPCA are demonstrated through a simple numerical example and the fed-batch penicillin fermentation process.

9.
ISA Trans ; 53(5): 1516-27, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24957277

RESUMEN

Multiblock principal component analysis (MBPCA) methods are gaining increasing attentions in monitoring plant-wide processes. Generally, MBPCA assumes that some process knowledge is incorporated for block division; however, process knowledge is not always available. A new totally data-driven MBPCA method, which employs mutual information (MI) to divide the blocks automatically, has been proposed. By constructing sub-blocks using MI, the division not only considers linear correlations between variables, but also takes into account non-linear relations thereby involving more statistical information. The PCA models in sub-blocks reflect more local behaviors of process, and the results in all blocks are combined together by support vector data description. The proposed method is implemented on a numerical process and the Tennessee Eastman process. Monitoring results demonstrate the feasibility and efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA