Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Med ; 21(1): 96, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927608

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) derived from bone marrow mesenchymal stem cells (MSCs) pretreated with atorvastatin (ATV) (MSCATV-EV) have a superior cardiac repair effect on acute myocardial infarction (AMI). The mechanisms, however, have not been fully elucidated. This study aims to explore whether inflammation alleviation of infarct region via macrophage polarization plays a key role in the efficacy of MSCATV-EV. METHODS: MSCATV-EV or MSC-EV were intramyocardially injected 30 min after coronary ligation in AMI rats. Macrophage infiltration and polarization (day 3), cardiac function (days 0, 3, 7, 28), and infarct size (day 28) were measured. EV small RNA sequencing and bioinformatics analysis were conducted for differentially expressed miRNAs between MSCATV-EV and MSC-EV. Macrophages were isolated from rat bone marrow for molecular mechanism analysis. miRNA mimics or inhibitors were transfected into EVs or macrophages to analyze its effects on macrophage polarization and cardiac repair in vitro and in vivo. RESULTS: MSCATV-EV significantly reduced the amount of CD68+ total macrophages and increased CD206+ M2 macrophages of infarct zone on day 3 after AMI compared with MSC-EV group (P < 0.01-0.0001). On day 28, MSCATV-EV much more significantly improved the cardiac function than MSC-EV with the infarct size markedly reduced (P < 0.05-0.0001). In vitro, MSCATV-EV also significantly reduced the protein and mRNA expressions of M1 markers but increased those of M2 markers in lipopolysaccharide-treated macrophages (P < 0.05-0.0001). EV miR-139-3p was identified as a potential cardiac repair factor mediating macrophage polarization. Knockdown of miR-139-3p in MSCATV-EV significantly attenuated while overexpression of it in MSC-EV enhanced the effect on promoting M2 polarization by suppressing downstream signal transducer and activator of transcription 1 (Stat1). Furthermore, MSCATV-EV loaded with miR-139-3p inhibitors decreased while MSC-EV loaded with miR-139-3p mimics increased the expressions of M2 markers and cardioprotective efficacy. CONCLUSIONS: We uncovered a novel mechanism that MSCATV-EV remarkably facilitate cardiac repair in AMI by promoting macrophage polarization via miR-139-3p/Stat1 pathway, which has the great potential for clinical translation.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Ratas , Animales , Atorvastatina/farmacología , Atorvastatina/uso terapéutico , Atorvastatina/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Vesículas Extracelulares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Factor de Transcripción STAT1/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36881213

RESUMEN

PURPOSE: In recent decades, the occurrence of heart failure with preserved ejection fraction (HFpEF) has outweighed that of heart failure with reduced ejection fraction by degrees, but few drugs have been demonstrated to improve long-term clinical outcomes in patients with HFpEF. Levosimendan, a calcium-sensitizing cardiotonic agent, improves decompensated heart failure clinically. However, the anti-HFpEF activities of levosimendan and underlying molecular mechanisms are unclear. METHODS: In this study, a double-hit HFpEF C57BL/6N mouse model was established, and levosimendan (3 mg/kg/week) was administered to HFpEF mice aged 13 to 17 weeks. Different biological experimental techniques were used to verify the protective effects of levosimendan against HFpEF. RESULTS: After four weeks of drug treatment, left ventricular diastolic dysfunction, cardiac hypertrophy, pulmonary congestion, and exercise exhaustion were significantly alleviated. Junction proteins in the endothelial barrier and between cardiomyocytes were also improved by levosimendan. Among the gap junction channel proteins, connexin 43, which was especially highly expressed in cardiomyocytes, mediated mitochondrial protection. Furthermore, levosimendan reversed mitochondrial malfunction in HFpEF mice, as evidenced by increased mitofilin and decreased ROS, superoxide anion, NOX4, and cytochrome C levels. Interestingly, after levosimendan administration, myocardial tissue from HFpEF mice showed restricted ferroptosis, indicated by an increased GSH/GSSG ratio; upregulated GPX4, xCT, and FSP-1 expression; and reduced intracellular ferrous ion, MDA, and 4-HNE levels. CONCLUSION: Regular long-term levosimendan administration can benefit cardiac function in a mouse model of HFpEF with metabolic syndromes (namely, obesity and hypertension) by activating connexin 43-mediated mitochondrial protection and sequential ferroptosis inhibition in cardiomyocytes.

3.
J Cell Mol Med ; 25(20): 9784-9795, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34551195

RESUMEN

Circular RNA is a newly discovered member of non-coding RNA (ncRNA) and regulates the target gene by acting as a micro-RNA sponge. It plays vital roles in various diseases. However, the functions of circular RNA in non-small cell lung cancer (NSCLC) remain still unclear. Our data showed that circ-WHSC1 was highly expressed in NSCLC cells and tissues. Both in vitro and in vivo experiments showed that circ-WHSC1 promoted NSCLC proliferation. circ-WHSC1 also promoted the migration and invasion of lung cancer cells. Through bioinformatic analysis and functional experiments, we showed that circ-WHSC1 could act as a sponge for micro-RNA-7 (miR-7) and regulate the expression of TAB2 (TGF-beta activated kinase one binding protein two). Inhibition of the circ-WHSC1/miR-7/TAB2 pathway could effectively attenuate lung cancer progression. In summary, this study confirmed the existence and oncogenic function of circ-WHSC1 in NSCLC. The research suggests that the circ-WHSC1/miR-7/TAB2 axis might be a potential target for NSCLC therapy.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , Neoplasias Pulmonares/genética , MicroARNs/genética , Oncogenes , ARN Circular/genética , Proteínas Represoras/genética , Animales , Apoptosis/genética , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Proliferación Celular/genética , Modelos Animales de Enfermedad , Xenoinjertos , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Ratones , Interferencia de ARN , Proteínas Represoras/metabolismo
4.
Cell Commun Signal ; 19(1): 109, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34749750

RESUMEN

BACKGROUND: Heart failure, which is characterized by cardiac remodelling, is one of the most common chronic diseases in the aged. Stimulator of interferon genes (STING) acts as an indispensable molecule modulating immune response and inflammation in many diseases. However, the effects of STING on cardiomyopathy, especially cardiac remodelling are still largely unknown. This study was designed to investigate whether STING could affect cardiac remodelling and to explore the potential mechanisms. METHODS: In vivo, aortic binding (AB) surgery was performed to construct the mice model of cardiac remodelling. A DNA microinjection system was used to trigger STING overexpression in mice. The STING mRNA and protein expression levels in mice heart were measured, and the cardiac hypertrophy, fibrosis, inflammation and cardiac function were also evaluated. In vitro, cardiomyocytes stimulated by Ang II and cardiac fibroblasts stimulated by TGF-ß to performed to further study effects of STING on cardiac hypertrophy and fibroblast. In terms of mechanisms, the level of autophagy was detected in mice challenged with AB. Rapamycin, a canonical autophagy inducer, intraperitoneal injected into mice to study possible potential pathway. RESULTS: In vivo, the STING mRNA and protein expression levels in mice heart challenged with AB for 6 weeks were significantly increased. STING overexpression significantly mitigated cardiac hypertrophy, fibrosis and inflammation, apart from improving cardiac function. In vitro, experiments further disclosed that STING overexpression in cardiomyocytes induced by Ang II significantly inhibited the level of cardiomyocyte cross-section area and the ANP mRNA. Meanwhile, TGF-ß-induced the increase of α-SMA content and collagen synthesis in cardiac fibroblasts could be also blocked by STING overexpression. In terms of mechanisms, mice challenged with AB showed higher level of autophagy compared with the normal mice. However, STING overexpression could reverse the activation of autophagy triggered by AB. Rapamycin, a canonical autophagy inducer, offset the cardioprotective effects of STING in mice challenged with AB. Finally, further experiments unveiled that STING may inhibit autophagy by phosphorylating ULK1 on serine757. CONCLUSIONS: STING may prevent cardiac remodelling induced by pressure overload by inhibiting autophagy, which could be a promising therapeutic target in heart failure. Video Abstract.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Autofagia/genética , Cardiomegalia/genética , Insuficiencia Cardíaca/genética , Proteínas de la Membrana/genética , Angiotensina II/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Autofagia/efectos de los fármacos , Cardiomegalia/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Insuficiencia Cardíaca/patología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sustancias Protectoras/farmacología , Transducción de Señal/genética , Sirolimus/farmacología
5.
Pharmacol Res ; 166: 105466, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33548489

RESUMEN

Ferroptosis is a new form of regulated cell death (RCD) driven by iron-dependent lipid peroxidation, which is morphologically and mechanistically distinct from other forms of RCD including apoptosis, autophagic cell death, pyroptosis and necroptosis. Recently, ferroptosis has been found to participate in the development of various cardiovascular diseases (CVDs) including doxorubicin-induced cardiotoxicity, ischemia/reperfusion-induced cardiomyopathy, heart failure, aortic dissection and stroke. Cardiovascular homeostasis is indulged in delicate equilibrium of assorted cell types composing the heart or vessels, and how ferroptosis contributes to the pathophysiological responses in CVD progression is unclear. Herein, we reviewed recent discoveries on the basis of ferroptosis and its involvement in CVD pathogenesis, together with related therapeutic potentials, aiming to provide insights on fundamental mechanisms of ferroptosis and implications in CVDs and associated disorders.


Asunto(s)
Enfermedades Cardiovasculares/patología , Ferroptosis , Animales , Cardiotónicos/farmacología , Cardiotónicos/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Descubrimiento de Drogas , Ferroptosis/efectos de los fármacos , Humanos , Hierro/metabolismo , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos
6.
Ecotoxicol Environ Saf ; 221: 112433, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34146983

RESUMEN

Fine particulate matter (PM2.5) is one of the most important components of environmental pollutants and is associated with lung injury. Pyroptosis, a form of programmed cell death mainly mediated by the NLRP3 inflammasome, has been reported to be involved in sepsis-induced or ischemia/reperfusion-induced lung injury. However, the specific mechanisms of pyroptosis in PM2.5-induced lung injury are not yet clear. We constructed macrophage-specific NLRP3 knockout mice to explore the mechanism of PM2.5-induced lung injury in terms of inflammatory response, oxidative stress, and apoptosis levels, including the relationship between these effects and pyroptosis. The results disclosed that PM2.5 exposure increased the infiltration of macrophages and leukocytes and the secretion of inflammatory cytokines, including TNF-α and IL-6, in lung tissue. The activity of antioxidant enzymes, including SOD, GSH-PX, and CAT, significantly decreased, while MDA, the end product of lipid oxidation, remarkably increased. The level of apoptosis in lung tissue, measured by the TUNEL assay and apoptosis-related proteins (BAX and BCL-2), was significantly increased. Macrophage-specific NLRP3 knockout could offset these effects. We further observed that PM2.5 treatment activated the NLRP3 inflammasome and subsequently induced pyroptosis, as evidenced by the increased production of IL-1ß and IL-18 and the increase of the protein levels of NLRP3, ASC, caspase-1, and GSDMD, which were inhibited when NLRP3 was knocked out in macrophages. Taken together, these results revealed that NLRP3-mediated macrophage pyroptosis promoted PM2.5-induced lung injury through aggravating inflammation, oxidative stress, and apoptosis. Targeting the inhibition of NLRP3-mediated macrophage pyroptosis provides a new way to study lung injury induced by the exposure to PM2.5.


Asunto(s)
Lesión Pulmonar/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Material Particulado/toxicidad , Animales , Apoptosis/efectos de los fármacos , Citocinas/metabolismo , Técnicas de Inactivación de Genes , Inflamasomas/metabolismo , Inflamación , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lesión Pulmonar/inducido químicamente , Macrófagos/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis/efectos de los fármacos , Piroptosis/genética
7.
J Cell Mol Med ; 24(19): 11221-11229, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32846020

RESUMEN

Acute lung injury (ALI) induced by sepsis is characterized by an inflammatory process related to the up-regulation of inflammatory cytokines and chemokines. In the present study, we explored the role of circC3P1 in sepsis-induced ALI in vitro and in vivo. The caecal ligation and puncture (CLP)-induced sepsis model was established through CLP surgery. Forty adult male C57BL/6 mice were randomly assigned into sham, CLP, CLP + vector and CLP + circC3P1 (each n = 10). Primary murine pulmonary microvascular endothelial cells (MPVECs) were transfected with circC3P1 or empty vector 24 hours prior to LPS treatment via Lipofectamine 2000. The expressions of circC3P1, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß were evaluated after 6-h LPS treatment. Cell apoptosis was evaluated via flow cytometry. The CLP group demonstrated pulmonary morphological abnormalities, increased concentrations of TNF-α, IL-6 and IL-1ß in the lung tissue, compared with the sham group. MPVECs treated with LPS significantly elevated TNF-α, IL-6 and IL-1ß levels and increased cell apoptosis than that in the control group. The circC3P1 overexpression in sepsis-induced ALI mice attenuated pulmonary injury, inflammation and apoptosis. Besides, circC3P1 revealed anti-inflammatory and anti-apoptotic effect in MPVEC-treated LPS. CircC3P1 overexpression reduced cell apoptosis and pro-inflammatory cytokines levels via down-regulating miR-21. CircC3P1 attenuated pro-inflammatory cytokine production and cell apoptosis in ALI induced by sepsis through modulating miR-21, indicating that circC3P1 is a promising therapeutic biomarker for sepsis-induced ALI.


Asunto(s)
Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Apoptosis , Citocinas/biosíntesis , Mediadores de Inflamación/metabolismo , MicroARNs/metabolismo , ARN Circular/metabolismo , Sepsis/complicaciones , Lesión Pulmonar Aguda/etiología , Animales , Apoptosis/genética , Ciego/patología , Regulación hacia Abajo/genética , Células Endoteliales/patología , Ligadura , Lipopolisacáridos , Pulmón/irrigación sanguínea , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , MicroARNs/genética , Microvasos/patología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Punciones , ARN Circular/genética , Sepsis/genética
8.
J Cell Physiol ; 235(10): 7194-7203, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32039488

RESUMEN

Lung cancer remains the leading cause of cancer-related death all over the world. In spite of the great advances made in surgery and chemotherapy, the prognosis of lung cancer patients is poor. A substantial fraction of long noncoding RNAs (lncRNAs) can regulate various cancers. A recent study has reported that lncRNA HOXB-AS3 plays a critical role in cancers. However, its biological function remains unclear in lung cancer progression. In the current research, we found HOXB-AS3 was obviously elevated in NSCLC tissues and cells. Functional assays showed that inhibition of HOXB-AS3 was able to repress A549 and H1975 cell proliferation, cell colony formation ability and meanwhile, triggered cell apoptosis. Furthermore, the lung cancer cell cycle was mostly blocked in the G1 phase whereas the cell ratio in the S phase was reduced. Also, A549 and H1975 cell migration and invasion capacity were significantly repressed by the loss of HOXB-AS3. The PI3K/AKT pathway has been implicated in the carcinogenesis of multiple cancers. Here, we displayed that inhibition of HOXB-AS3 suppressed lung cancer cell progression via inactivating the PI3K/AKT pathway. Subsequently, in vivo experiments were utilized in our study and it was demonstrated that HOXB-AS3 contributed to lung cancer tumor growth via modulating the PI3K/AKT pathway. Overall, we implied that HOXB-AS3 might provide a new perspective for lung cancer treatment via targeting PI3K/AKT.


Asunto(s)
Proteínas de Homeodominio/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Largo no Codificante/genética , Células A549 , Anciano , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Proteínas de Homeodominio/antagonistas & inhibidores , Humanos , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Invasividad Neoplásica/genética , ARN sin Sentido/genética , ARN Interferente Pequeño/genética , Transducción de Señal
9.
Zhongguo Fei Ai Za Zhi ; 27(4): 283-290, 2024 Apr 20.
Artículo en Zh | MEDLINE | ID: mdl-38769831

RESUMEN

Non-small cell lung cancer (NSCLC) is a prevalent tumour type in our country, with lung squamous carcinoma being a commonly observed NSCLC subtype besides lung adenocarcinoma. Epidermal growth factor receptor (EGFR) is a significant driver gene in lung cancer, and EGFR mutation frequency is considerably lower in lung squamous carcinoma in comparison to lung adenocarcinoma. Although targeted therapy against EGFR has demonstrated significant advancements in lung adenocarcinoma, while progress in lung squamous carcinoma has been relatively sluggish. This paper reviews recent studies on molecular targeted therapy for EGFR-mutated lung squamous carcinoma and summarises the efficacy of EGFR-tyrosine kinase inhibitors (TKIs) in treating squamous carcinoma of the lung, in order to provide a reference for treating patients with EGFR-mutated squamous carcinoma of the lung.
.


Asunto(s)
Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias Pulmonares , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas , Humanos , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética
10.
Int Immunopharmacol ; 132: 111931, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38547769

RESUMEN

Peficitinib is a selective Janus kinase (JAK3) inhibitor recently developed and approved for the treatment of rheumatoid arthritis in Japan. Glycolysis in macrophages could induce NOD-like receptor (NLR) family and pyrin domain-containing protein 3 (NLRP3) inflammasome activation, thus resulting in pyroptosis and acute lung injury (ALI). The aim of our study was to investigate whether Peficitinib could alleviate lipopolysaccharide (LPS)-induced ALI by inhibiting NLRP3 inflammasome activation. Wild type C57BL/6J mice were intraperitoneally injected with Peficitinib (5 or 10 mg·kg-1·day-1) for 7 consecutive days before LPS injection. The results showed that Peficitinib pretreatment significantly relieved LPS-induced pulmonary edema, inflammation, and apoptosis. NLRP3 inflammasome and glycolysis in murine lung tissues challenged with LPS were also blocked by Peficitinib. Furthermore, we found that the activation of JAK3/signal transducer and activator of transcription 3 (STAT3) was also suppressed by Peficitinib in mice with ALI. However, in Jak3 knockout mice, Peficitinib did not show obvious protective effects after LPS injection. In vitro experiments further showed that Jak3 overexpression completely abolished Peficitinib-elicited inhibitory effects on pyroptosis and glycolysis in LPS-induced RAW264.7 macrophages. Finally, we unveiled that LPS-induced activation of JAK3/STAT3 was mediated by toll-like receptor 4 (TLR4) in RAW264.7 macrophages. Collectively, our study proved that Peficitinib could protect against ALI by blocking JAK3-mediated glycolysis and pyroptosis in macrophages, which may serve as a promising candidate against ALI in the future.


Asunto(s)
Lesión Pulmonar Aguda , Adamantano/análogos & derivados , Glucólisis , Janus Quinasa 3 , Lipopolisacáridos , Ratones Endogámicos C57BL , Niacinamida , Niacinamida/análogos & derivados , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Janus Quinasa 3/metabolismo , Janus Quinasa 3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Glucólisis/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Niacinamida/farmacología , Niacinamida/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Noqueados , Acrilamidas/farmacología , Acrilamidas/uso terapéutico , Inflamasomas/metabolismo , Piroptosis/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología
11.
Int J Nanomedicine ; 19: 2005-2024, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469055

RESUMEN

Background: Exosomes derived from bone marrow mesenchymal stem cells (MSC-exo) have been considered as a promising cell-free therapeutic strategy for ischemic heart disease. Cardioprotective drug pretreatment could be an effective approach to improve the efficacy of MSC-exo. Nicorandil has long been used in clinical practice for cardioprotection. This study aimed to investigate whether the effects of exosomes derived from nicorandil pretreated MSC (MSCNIC-exo) could be enhanced in facilitating cardiac repair after acute myocardial infarction (AMI). Methods: MSCNIC-exo and MSC-exo were collected and injected into the border zone of infarcted hearts 30 minutes after coronary ligation in rats. Macrophage polarization was detected 3 days post-infarction, cardiac function as well as histological pathology were measured on the 28th day after AMI. Macrophages were separated from the bone marrow of rats for in vitro model. Exosomal miRNA sequencing was conducted to identify differentially expressed miRNAs between MSCNIC-exo and MSC-exo. MiRNA mimics and inhibitors were transfected to MSCs or macrophages to explore the specific mechanism. Results: Compared to MSC-exo, MSCNIC-exo showed superior therapeutic effects on cardiac functional and structural recovery after AMI and markedly elevated the ratio of CD68+ CD206+/ CD68+cells in infarcted hearts 3 days post-infarction. The notable ability of MSCNIC-exo to promote macrophage M2 polarization was also confirmed in vitro. Exosomal miRNA sequencing and both in vivo and in vitro experiments identified and verified that miR-125a-5p was an effector of the roles of MSCNIC-exo in vivo and in vitro. Furthermore, we found miR-125a-5p promoted macrophage M2 polarization by inhibiting TRAF6/IRF5 signaling pathway. Conclusion: This study suggested that MSCNIC-exo could markedly facilitate cardiac repair post-infarction by promoting macrophage M2 polarization by upregulating miR-125a-5p targeting TRAF6/IRF5 signaling pathway, which has great potential for clinical translation.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Ratas , Animales , Nicorandil/metabolismo , Factor 6 Asociado a Receptor de TNF/metabolismo , Exosomas/metabolismo , Infarto del Miocardio/patología , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Transducción de Señal , Macrófagos/metabolismo , Factores Reguladores del Interferón/metabolismo
12.
Hepatogastroenterology ; 60(121): 153-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-22835824

RESUMEN

BACKGROUND/AIM: Cyclin G1 is a cell-cycle-regulatory protein that is frequently seen in elevated amounts in malignant tissue, including astrocytomas; melanoma; carcinoma of the esophagus, lung, and breast; as well as cancer of the cervix, uterus, and ovary. By contrast, it has demonstrated inhibitory activity in human hepatocellular carcinoma (HCC). METHODOLOGY: We investigated the role of cyclin G1 in HCC tissue obtained from 76 donors using immunohistochemistry and Western blot analysis to explore its relationship with HCC pathology and univariate and multivariate analyses to explore its relationship with surgical prognosis and patient survival. RESULTS: We found that cyclin G1 levels were increased in normal tissue compared with HCC tissue and vary over the course of the cell cycle, with equal distribution between the nucleus and cytoplasm observed during normal serum support and accelerated release from the nucleus into the cytoplasm observed during serum starvation. CONCLUSION: Our findings suggest a role for cyclin G1 in anti-HCC gene therapy.


Asunto(s)
Carcinoma Hepatocelular/cirugía , Ciclina G1/fisiología , Neoplasias Hepáticas/cirugía , Adulto , Anciano , Carcinoma Hepatocelular/química , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Ciclina G1/análisis , Femenino , Humanos , Inmunohistoquímica , Neoplasias Hepáticas/química , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad
13.
J Huazhong Univ Sci Technolog Med Sci ; 33(2): 224-227, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23592134

RESUMEN

Insulin-like growth factor-I (IGF-I) is a mitogenic and anti-apoptotic factor. Serum IGF-I concentration is related to some cancer risk and tumor progression. The aim of this research was to study the association of preoperative serum IGF-I concentration with clinicopathological parameters and prognosis of non-small cell lung cancer (NSCLC). Preoperative serum IGF-I concentration was measured in 80 consecutive patients with NSCLC who underwent radical lung cancer resection, and 45 patients with benign pulmonary lesion (BPL) by using enzyme linked immunosorbent assay (ELISA). The results showed that the serum IGF-I concentration was elevated and correlated with clinicopathological parameters and overall survival (OS) in NSCLC patients. Serum IGF-I concentration was significantly higher in patients with NSCLC than in those with BPL. The IGF-I concentrations were significantly higher in NSCLC patients with ≥T2, N1-3, and in IIIA-IV but not in those with

Asunto(s)
Biomarcadores de Tumor/sangre , Carcinoma de Pulmón de Células no Pequeñas/sangre , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Factor I del Crecimiento Similar a la Insulina/análisis , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Anciano , Carcinoma de Pulmón de Células no Pequeñas/cirugía , China , Femenino , Humanos , Neoplasias Pulmonares/cirugía , Masculino , Persona de Mediana Edad , Periodo Preoperatorio , Pronóstico , Reproducibilidad de los Resultados , Medición de Riesgo , Sensibilidad y Especificidad , Tasa de Supervivencia
14.
Zhongguo Fei Ai Za Zhi ; 26(1): 59-65, 2023 Jan 20.
Artículo en Zh | MEDLINE | ID: mdl-36792082

RESUMEN

Chimeric antigen receptor T cell (CAR-T) therapy has shown remarkable success in treating hematological malignancies. However, CAR-T therapy for solid tumors is still limited due to the unique solid-tumor microenvironment and heterogeneous target antigen expression, which leads to an urgent need of combining other therapies. At present, nano delivery system has become one of the most promising directions for the development of anti-tumor drugs. Based on the background of CAR-T and tumor treatment, we focus on the research progress of nanomedicine combined with CAR-T therapy, and systematically review the strategies and examples in recent years in the aspects of in vivo delivery of mRNA, regulation of tumor microenvironment, combination with photothermal therapy. And we also look forward to the future direction of this filed.
.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/uso terapéutico , Preparaciones Farmacéuticas/metabolismo , Antígenos de Neoplasias/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias/metabolismo , Linfocitos T , Microambiente Tumoral , Nanopartículas/uso terapéutico
15.
Int Immunopharmacol ; 125(Pt B): 111208, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976603

RESUMEN

Transmembrane protein 16A (TMEM16A) is one of the members of the ten-member family of "transmembrane protein 16", playing critical roles in infection and solid organ injury. Acute lung injury (ALI) is a devastating disease which could be triggered by sepsis, trauma, and ischemia reperfusion. However, molecular mechanisms contributing to ALI are poorly understood at presently. In this study, we investigated the role of TMEM16A in sepsis-induced ALI using TMEM16A-deficient mice. Sepsis-induced ALI model was established by intratracheal injection of lipopolysaccharide (LPS). Our results showed that LPS stimulation significantly upregulated the expression levels of TMEM16A in lung tissues and in alveolar epithelial type II (AT2) cells. Knockout of TMEM16A in AT2 cells significantly improved pulmonary function and alleviated lung pathological injury in LPS-treated mice. Meanwhile, TMEM16A deficiency also inhibited endoplasmic reticulum (ER) stress and ferroptosis in AT2 cells from LPS-treated mice. In vitro experiments further demonstrated that ER stress and ferroptosis were inhibited after TMEM16A was knocked out. Furthermore, we used ER stress inducer thapsigargin to induce ER stress in TMEM16A-null AT2 cells and found that the induction of ER stress abolished the inhibition of ferroptosis by TMEM16A deficiency in LPS-treated AT2 cells. Finally, we disclosed that pharmacological inhibition of TMEM16A by shikonin also showed similar therapeutic effect on LPS-induced ALI in vivo. In conclusion, TMEM16A deficiency in AT2 cells could alleviate sepsis-induced ALI by decreasing ER stress-induced ferroptosis during ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ferroptosis , Sepsis , Animales , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Células Epiteliales Alveolares/patología , Estrés del Retículo Endoplásmico , Lipopolisacáridos/farmacología , Pulmón/patología , Ratones Noqueados , Sepsis/patología
16.
Clin Epigenetics ; 15(1): 182, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951958

RESUMEN

BACKGROUND: Epithelial mesenchymal transformation (EMT) in alveolar type 2 epithelial cells (AT2) is closely associated with pulmonary fibrosis (PF). Histone deacetylase 3 (HDAC3) is an important enzyme that regulates protein stability by modulating the acetylation level of non-histones. Here, we aimed to explore the potential role and regulatory mechanisms associated with HDAC3 in PF. METHODS: We quantified HDAC3 expression both in lung tissues from patients with PF and from bleomycin (BLM)-treated mice. HDAC3 was also detected in TGF-ß1-treated AT2. The mechanistic activity of HDAC3 in pulmonary fibrosis and EMT was also explored. RESULTS: HDAC3 was highly expressed in lung tissues from patients with PF and bleomycin (BLM)-treated mice, especially in AT2. Lung tissues from AT2-specific HDAC3-deficient mice stimulated with BLM showed alleviative fibrosis and EMT. Upstream of HDAC3, TGF-ß1/SMAD3 directly promoted HDAC3 transcription. Downstream of HDAC3, we also found that genetic or pharmacologic inhibition of HDAC3 inhibited GATA3 expression at the protein level rather than mRNA. Finally, we found that intraperitoneal administration of RGFP966, a selective inhibitor of HDAC3, could prevent mice from BLM-induced pulmonary fibrosis and EMT. CONCLUSION: TGF-ß1/SMAD3 directly promoted the transcription of HDAC3, which aggravated EMT in AT2 and pulmonary fibrosis in mice via deacetylation of GATA3 and inhibition of its degradation. Our results suggest that targeting HDAC3 in AT2 may provide a new therapeutic target for the prevention of PF.


Asunto(s)
Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/prevención & control , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Bleomicina/metabolismo , Bleomicina/farmacología , Metilación de ADN , Pulmón/metabolismo , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal
17.
Ying Yong Sheng Tai Xue Bao ; 34(10): 2672-2682, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-37897274

RESUMEN

To clarify the photosynthetic mechanism contributing to the enhancement of intercropping advantages through co-ridge intercropping of maize and peanut, we conducted a field randomized block experiment under two phosphorus levels of 0(P0) and 180 kg P2O5·hm-2(P180) with flat intercropping of maize and peanut (FIC) as the control. We analyzed the effects of co-ridge intercropping of maize and peanut (RIC) and groove-ridge intercropping of maize and peanut (GIC) on crop leaf area index (LAI), SPAD values, CO2 carboxylation ability, photosystems coordination (ΦPSⅠ/PSⅡ), and intercropping advantage of yield. The results showed that RIC significantly increased SPAD value at the silking stage of intercropping maize, and significantly improved the apparent quantum yield of photosynthesis (AQY), maximum electron transfer rate (Jmax), maximum rate of Rubisco carboxylation (Vc,max), net photosynthetic rate at the CO2 saturation (Amax) and ΦPSⅠ/PSⅡ of intercropping maize compared with those of FIC and GIC at silking stage and milking stage, but reduced the ratio of variable fluorescence Fk to amplitude Fj-Fo(Wk) and the ratio of variable fluorescence Fj to amplitude Fp-Fo(Vj) of the functional leaf photosystem Ⅱ (PSⅡ) at the milking stage of maize. There were no significant differences in these parameters between FIC and GIC. Compared with FIC, both RIC and GIC increased LAI of intercropping peanut at late growth stage and SPAD value at pod setting stage, significantly improved Vc,max, Amax, and ΦPSⅠ/PSⅡ, and reduced Wk and Vj values of intercropping peanut functional leaves at pod expanding stage. The difference in these parameters between RIC and GIC were not significant. The land equivalent ratio and intercropping advantages of RIC were higher than those of FIC and GIC. Phosphorus application could further promote Vc,max, Jmax, Amax and ΦPSⅠ/PSⅡ of intercropping maize and peanut, and significantly improve yield advantages of intercropping. The findings indicated that co-ridge intercropping could enhance CO2 carboxylation and fixation by improving photosynthetic electron transport and pho-tosystems coordination, improve the photosynthetic rate of functional leaves of maize and peanut, thus increase crop yield and intercropping advantages.


Asunto(s)
Arachis , Zea mays , Dióxido de Carbono , Agricultura/métodos , Fotosíntesis , Fósforo
18.
Ther Adv Chronic Dis ; 13: 20406223221078088, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295615

RESUMEN

Objective: To investigate the optimal percutaneous coronary intervention (PCI) strategy in patients with ST-segment elevation myocardial infarction (STEMI) and multivessel coronary artery disease. Methods: Trials that randomized patients with STEMI and multivessel coronary artery disease to immediate multivessel PCI, staged multivessel PCI, or culprit-only PCI and prospective observational studies that investigated all-cause death were included. Random effect risk ratio (RR) and 95% confidence interval (CI) were calculated. Results: A total of 13 randomized trials with 7627 patients and 21 prospective observational studies with 60311 patients were included. In the pairwise and network meta-analysis based on randomized trials, immediate or staged multivessel PCI was associated with a lower risk of long-term major adverse cardiac events (MACE; RR: 0.58; 95% CI: 0.45 to 0.74) than culprit-only PCI, which was mainly due to lower risks of myocardial infarction (RR: 0.67; 95% CI: 0.51 to 0.88) and revascularization (RR: 0.38; 95% CI: 0.28 to 0.51), without any significant difference in all-cause death (RR: 0.85; 95% CI: 0.69 to 1.04; I 2 = 0.0%). However, short-term outcomes were deficient in randomized trials. The results from real-world prospective observational studies suggested that staged multivessel PCI reduced long-term all-cause death (RR: 0.53; 95% CI: 0.39 to 0.71; I 2 = 15.6%), whereas immediate multivessel PCI increased short-term all-cause death (RR: 1.58; 95% CI: 1.22 to 2.05; I 2 = 43.8%) relative to culprit-only PCI. Conclusion: For patients in randomized trials, multivessel PCI in an immediate or staged procedure was preferred due to improvements in long-term outcomes. As a supplement, the results in real-world patients derived from prospective observational studies suggested that staged multivessel PCI was superior to immediate multivessel PCI. Therefore, staged multivessel PCI may be the optimal PCI strategy for patients with STEMI and multivessel coronary artery disease.

19.
J Vis Exp ; (182)2022 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-35532274

RESUMEN

With the development of stem cell therapy in translational research and regenerative medicine, bone marrow mesenchymal stem cells (BM-MSCs), as a kind of pluripotent stem cells, are favored for their instant availability and proven safety. It has been reported that transplantation of BM-MSCs is of great benefit to repairing injured tissues in various diseases, which might be related to modulating the immune and inflammatory responses via paracrine mechanisms. Extracellular vesicles (EVs), featuring a double-layer lipid membrane structure, are considered to be the main mediators of the paracrine effects of stem cells. Recognized for their crucial roles in cell communication and epigenetic regulation, EVs have already been applied in vivo for immunotherapy. However, similar to its maternal cells, most of the studies on the efficacy of transplantation of EVs still remain at the level of small animals, which is not enough to provide essential evidence for clinical translation. Here, we use density-gradient centrifugation to isolate bone marrow cells (BMC) from porcine bone marrow at first, and get porcine BM-MSCs (pBM-MSCs) by cell culture subsequently, identified by the results of observation under the microscope, induced differentiation assay, and flow cytometry. Furthermore, we isolate EVs derived from pBM-MSCs in cell supernatant by ultracentrifugation, proved by the techniques of transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and western blotting successfully. Overall, pBM-MSCs and their derived EVs can be isolated and identified effectively by the following protocols, which might be widely used in pre-clinical studies on the transplantation efficacy of BM-MSCs and their derived EVs.


Asunto(s)
Vesículas Extracelulares , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Células de la Médula Ósea , Epigénesis Genética , Vesículas Extracelulares/metabolismo , Medicina Regenerativa , Porcinos
20.
Stem Cell Res Ther ; 13(1): 289, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799283

RESUMEN

BACKGROUND: Bone marrow cells (BMCs), especially mesenchymal stem cells (MSCs), have shown attractive application prospects in acute myocardial infarction (AMI). However, the weak efficacy becomes their main limitation in clinical translation. Based on the anti-inflammation and anti-apoptosis effects of a Chinese medicine-Tongxinluo (TXL), we aimed to explore the effects of TXL-pretreated MSCs (MSCsTXL) in enhancing cardiac repair and further investigated the underlying mechanism. METHODS: MSCsTXL or MSCs and the derived exosomes (MSCsTXL-exo or MSCs-exo) were collected and injected into the infarct zone of rat hearts. In vivo, the anti-apoptotic and anti-inflammation effects, and cardiac functional and histological recovery were evaluated. In vitro, the apoptosis was evaluated by western blotting and flow cytometry. miRNA sequencing was utilized to identify the significant differentially expressed miRNAs between MSCsTXL-exo and MSCs-exo, and the miRNA mimics and inhibitors were applied to explore the specific mechanism. RESULTS: Compared to MSCs, MSCsTXL enhanced cardiac repair with reduced cardiomyocytes apoptosis and inflammation at the early stage of AMI and significantly improved left ventricular ejection fraction (LVEF) with reduced infarct size in an exosome-dependent way. Similarly, MSCsTXL-exo exerted superior therapeutic effects in anti-apoptosis and anti-inflammation, as well as improving LVEF and reducing infarct size compared to MSCs-exo. Further exosomal miRNA analysis demonstrated that miR-146a-5p was the candidate effector of the superior effects of MSCsTXL-exo. Besides, miR-146a-5p targeted and decreased IRAK1, which inhibited the nuclear translocation of NF-κB p65 thus protecting H9C2 cells from hypoxia injury. CONCLUSIONS: This study suggested that MSCsTXL markedly facilitated cardiac repair via a new mechanism of the exosomal transfer of miR-146a-5p targeting IRAK1/NF-κB p65 pathway, which has great potential for clinical translation.


Asunto(s)
Exosomas , Quinasas Asociadas a Receptores de Interleucina-1 , Células Madre Mesenquimatosas , MicroARNs , Infarto del Miocardio , Factor de Transcripción ReIA , Animales , Medicamentos Herbarios Chinos , Exosomas/metabolismo , Quinasas Asociadas a Receptores de Interleucina-1/metabolismo , Células Madre Mesenquimatosas/metabolismo , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/terapia , Ratas , Volumen Sistólico , Factor de Transcripción ReIA/metabolismo , Función Ventricular Izquierda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA