Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Anal Chem ; 96(17): 6847-6852, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38639290

RESUMEN

Organic photoelectrochemical transistor (OPECT) has shown substantial potential in the development of next-generation bioanalysis yet is limited by the either-or situation between the photoelectrode types and the channel types. Inspired by the dual-photoelectrode systems, we propose a new architecture of dual-engine OPECT for enhanced signal modulation and its biosensing application. Exemplified by incorporating the CdS/Bi2S3 photoanode and Cu2O photocathode within the gate-source circuit of Ag/AgCl-gated poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel, the device shows enhanced modulation capability and larger transconductance (gm) against the single-photoelectrode ones. Moreover, the light irritation upon the device effectively shifts the peak value of gm to zero gate voltage without degradation and generates larger current steps that are advantageous for the sensitive bioanalysis. Based on the as-developed dual-photoelectrode OPECT, target-mediated recycling and etching reactions are designed upon the CdS/Bi2S3, which could result in dual signal amplification and realize the sensitive microRNA-155 biodetection with a linear range from 1 fM to 100 pM and a lower detection limit of 0.12 fM.


Asunto(s)
Cobre , Técnicas Electroquímicas , Sulfuros , Tiofenos , Técnicas Electroquímicas/instrumentación , Cobre/química , Sulfuros/química , Compuestos de Cadmio/química , Técnicas Biosensibles/instrumentación , Bismuto/química , Transistores Electrónicos , Procesos Fotoquímicos , Poliestirenos/química , MicroARNs/análisis , Electrodos , Polímeros/química
2.
Angew Chem Int Ed Engl ; : e202405131, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38845566

RESUMEN

The low analgesic efficiency has limited magnesium used in analgesia. Here, we report boron hydride (BH) with ion current rectification activity can significantly improve the analgesic efficiency of magnesium, even higher than morphine. The synthesized injectable MgB2 composes of hexagonal boron sheets alternating with Mg2+. In pathological environment, while the intercalated Mg2+ will be exchanged by H+, the 2-dimensional borophene-analogue BH sheets will be formed to interact with the charged cations via the cation-pi interaction, synergistically leading to a sort of two-way dynamic modulation of sodium and potassium ion currents in neurons. By coordinating with the released Mg2+ to compete Ca2+, the threshold potential remarkably increases from the normal -35.9 mV to -5.9 mV, which significantly suppresses neuronal excitability, providing a potent analgesic effect. In three typical pain models , including CFA-induced inflammatory pain, PINP- or CCI-induced neuropathic pain, MgB2 demonstrates its analgesic efficiency approximately 2.23, 3.20, and 2.0 times higher than the clinical MgSO4, respectively. The development of MgB2 as analgesic drugs addresses the unmet medical need of pain relief without the risks of drug tolerance or addiction to opioids.

3.
Angew Chem Int Ed Engl ; 62(15): e202300356, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36780170

RESUMEN

Sustained signal activation by hydroxyl radicals (⋅OH) has great significance, especially for tumor treatment, but remains challenging. Here, a built-in electric field (BIEF)-driven strategy was proposed for sustainable generation of ⋅OH, thereby achieving long-lasting chemodynamic therapy (LCDT). As a proof of concept, a novel Janus-like Fe@Fe3 O4 -Cu2 O heterogeneous catalyst was designed and synthesized, in which the BIEF induced the transfer of electrons in the Fe core to the surface, reducing ≡Cu2+ to ≡Cu+ , thus achieving continuous Fenton-like reactions and ⋅OH release for over 18 h, which is approximately 12 times longer than that of Fe3 O4 -Cu2 O and 72 times longer than that of Cu2 O nanoparticles. In vitro and in vivo antitumor results indicated that sustained ⋅OH levels led to persistent extracellular regulated protein kinases (ERK) signal activation and irreparable oxidative damage to tumor cells, which promoted irreversible tumor apoptosis. Importantly, this strategy provides ideas for developing long-acting nanoplatforms for various applications.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Radical Hidroxilo/metabolismo , Estrés Oxidativo , Peróxido de Hidrógeno/metabolismo , Línea Celular Tumoral
4.
Angew Chem Int Ed Engl ; 61(45): e202210487, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36117387

RESUMEN

T lymphocytes (T cells) are essential for tumor immunotherapy. However, the insufficient number of activated T cells greatly limits the efficacy of tumor immunotherapy. Herein, we proposed an oncolytic virus-mimicking strategy to enhance T cell recruitment and activation for tumor treatment. We constructed an oncolytic virus-like nanoplatform (PolyIC@ZIF-8) that was degraded in the acidic tumor environment to release PolyIC and Zn2+ . The released PolyIC exhibited an oncolytic virus-like function that induced tumor cell apoptosis and promoted T cell recruitment and activation through a tumor antigen-dependent manner. More importantly, the released Zn2+ not only enhanced T cell recruitment by inducing CXCL9/10/11 expression but also promoted T cell activation to increase interferon-γ (INF-γ) expression by inducing the phosphorylation of ZAP-70 via a tumor antigen-independent manner. This Zn2+ -enhanced oncolytic virus-mimicking strategy provides a new approach for tumor immunotherapy.


Asunto(s)
Nanopartículas , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Virus Oncolíticos/metabolismo , Inmunoterapia , Neoplasias/terapia , Antígenos de Neoplasias , Línea Celular Tumoral
5.
Angew Chem Int Ed Engl ; 59(50): 22537-22543, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32856362

RESUMEN

Redox homeostasis is one of the main reasons for reactive oxygen species (ROS) tolerance in hypoxic tumors, limiting ROS-mediated tumor therapy. Proposed herein is a redox dyshomeostasis (RDH) strategy based on a nanoplatform, FeCysPW@ZIF-82@CAT Dz, to disrupt redox homeostasis, and its application to improve ROS-mediated hypoxic tumor therapy. Once endocytosed by tumor cells, the catalase DNAzyme (CAT Dz) loaded zeolitic imidazole framework-82 (ZIF-82@CAT Dz) shell can be degraded into Zn2+ as cofactors for CAT Dz mediated CAT silencing and electrophilic ligands for glutathione (GSH) depletion under hypoxia, both of which lead to intracellular RDH and H2 O2 accumulation. These "disordered" cells show reduced resistance to ROS and are effectively killed by ferrous cysteine-phosphotungstate (FeCysPW) induced chemodynamic therapy (CDT). In vitro and in vivo data demonstrate that the pH/hypoxia/H2 O2 triple stimuli responsive nanocomposite can efficiently kill hypoxic tumors. Overall, the RDH strategy provides a new way of thinking about ROS-mediated treatment of hypoxic tumors.


Asunto(s)
Antineoplásicos/farmacología , Cisteína/farmacología , ADN Catalítico/metabolismo , Compuestos Ferrosos/farmacología , Ácido Fosfotúngstico/farmacología , Hipoxia Tumoral/efectos de los fármacos , Zeolitas/farmacología , Animales , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Cisteína/química , ADN Catalítico/química , Compuestos Ferrosos/química , Células HeLa , Homeostasis/efectos de los fármacos , Humanos , Ratones , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Oxidación-Reducción , Tamaño de la Partícula , Ácido Fosfotúngstico/química , Fotoquimioterapia , Especies Reactivas de Oxígeno/metabolismo , Propiedades de Superficie , Zeolitas/química
6.
Angew Chem Int Ed Engl ; 59(47): 21032-21040, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-32667130

RESUMEN

Free radicals with reactive chemical properties can fight tumors without causing drug resistance. Reactive oxygen species (ROS) has been widely used for cancer treatment, but regrettably, the common O2 and H2 O2 deficiency in tumors sets a severe barrier for sufficient ROS production, leading to unsatisfactory anticancer outcomes. Here, we construct a chlorine radical (. Cl) nano-generator with SiO2 -coated upconversion nanoparticles (UCNPs) on the inside and Ag0 /AgCl hetero-dots on the outside. Upon near-infrared (NIR) light irradiation, the short-wavelength emission UCNP catalyzes . Cl generation from Ag0 /AgCl with no dependence on O2 /H2 O2 . . Cl with strong oxidizing capacity and nucleophilicity can attack biomolecules in cancer cells more effectively than ROS. This . Cl stress treatment will no doubt broaden the family of oxidative stress-induced antitumor strategies by using non-oxygen free radicals, which is significant in the development of new anticancer agents.


Asunto(s)
Antineoplásicos/farmacología , Cloro/farmacología , Radicales Libres/farmacología , Fármacos Fotosensibilizantes/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cloro/química , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Radicales Libres/química , Rayos Infrarrojos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Nanopartículas/química , Estrés Oxidativo/efectos de los fármacos , Tamaño de la Partícula , Fármacos Fotosensibilizantes/química , Dióxido de Silicio/química , Dióxido de Silicio/farmacología , Plata/química , Plata/farmacología , Propiedades de Superficie
7.
J Pharmacol Exp Ther ; 352(1): 129-38, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352499

RESUMEN

Repurposing existing drugs not only accelerates drug discovery but rapidly advances clinical therapeutic strategies. In this article, we identified potassium antimonyl tartrate (PAT), an antiparasitic drug, as a novel agent to block angiogenesis by screening US Food and Drug Administration-approved chemical drugs. By comparing the cytotoxicity of PAT in various nonsmall-cell lung cancer (NSCLC) cells with that observed in primary cultured human umbilical vein endothelial cells (HUVECs), we found that HUVECs were much more sensitive to the PAT treatment. In in vivo tumor xenograft mouse models established either by PAT-resistant A549 cells or by patient primary tumors, PAT significantly decreased the tumor volume and tumor weight of NSCLC xenografts at dosage of 40 mg/kg (i.p., daily) and, more importantly, augmented the antitumor efficacy of cisplatin chemotherapy. Remarkable loss of vascularization in the treated xenografts indicated the in vivo antiangiogenesis property of PAT, which was well correlated with its tumor growth inhibition in NSCLC cells. Furthermore, in the in vitro angiogenic assays, PAT exhibited dose-dependent inhibition of HUVEC proliferation, migration, and tube formation in response to different stimuli. Consistently, PAT also abolished the vascular endothelial cell growth factor-induced angiogenesis in the Matrigel plugs assay. Mechanistically, we found that PAT inhibited the activities of several receptor tyrosine kinases and specifically blocked the activation of downstream Src and focal adhesion kinases in HUVECs. Taken together, our results characterized the novel antiangiogenic and antitumor function of PAT in NSCLC cells. Further study of PAT in anticancer clinical trials may be warranted.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Tartrato de Antimonio y Potasio/farmacología , Antiparasitarios/farmacología , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/patología , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Tartrato de Antimonio y Potasio/uso terapéutico , Antiparasitarios/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/irrigación sanguínea , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Cisplatino/farmacología , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Neoplasias Pulmonares/irrigación sanguínea , Ratones , Proteínas Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Adv Mater ; 36(2): e2307980, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37823714

RESUMEN

Chemodynamic therapy (CDT) is an emerging tumor microenvironment-responsive cancer therapeutic strategy based on Fenton/Fenton-like reactions. However, the effectiveness of CDT is subject to the slow kinetic rate and non-homogeneous distribution of H2 O2 . In this study, a conceptual non-metallic "Fenton-active" center construction strategy is proposed to enhance CDT efficiency using Bi0.44 Ba0.06 Na0.5 TiO2.97 (BNBT-6) nanocrystals. The separated charge carriers under a piezoelectric-induced electric field synchronize the oxidation of H2 O and reduction of H2 O2 , which consequently increases hydroxyl radical (·OH) yield even under low H2 O2 levels. Moreover, acceptor doping induces electron-rich oxygen vacancies to facilitate the dissociation of H2 O2 and H2 O and further promote ·OH generation. In vitro and in vivo experiments demonstrate that BNBT-6 induces extensive intracellular oxidative stress and enhances cell-killing efficiency by activating necroptosis in addition to the conventional apoptotic pathway. This study proposes a novel design approach for nanomaterials used in CDT and presents a new treatment strategy for apoptosis-resistant tumors.


Asunto(s)
Apoptosis , Neoplasias , Humanos , Ultrasonografía , Electricidad , Electrones , Radical Hidroxilo , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Peróxido de Hidrógeno , Microambiente Tumoral
9.
Nat Nanotechnol ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862714

RESUMEN

To fulfil the demands of rapid proliferation, tumour cells undergo significant metabolic alterations. Suppression of hyperactivated metabolism has been proven to counteract tumour growth. However, whether the reactivation of downregulated metabolic pathways has therapeutic effects remains unexplored. Here we report a nutrient-based metabolic reactivation strategy for effective melanoma treatment. L-Tyrosine-oleylamine nanomicelles (MTyr-OANPs) were constructed for targeted supplementation of tyrosine to reactivate melanogenesis in melanoma cells. We found that reactivation of melanogenesis using MTyr-OANPs significantly impeded the proliferation of melanoma cells, primarily through the inhibition of glycolysis. Furthermore, leveraging melanin as a natural photothermal reagent for photothermal therapy, we demonstrated the complete eradication of tumours in B16F10 melanoma-bearing mice through treatment with MTyr-OANPs and photothermal therapy. Our strategy for metabolism activation-based tumour treatment suggests specific nutrients as potent activators of metabolic pathways.

10.
Acta Biomater ; 172: 423-440, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37778486

RESUMEN

Chemodynamic therapy (CDT) based on generating reactive oxygen species (ROS) is promising for cancer treatment. However, the intrinsic H2O2 is deficient for CDT, and glutathione (GSH) eliminates ROS to protect tumor cells from ROS cytotoxicity. Herein, we propose a strategy to switch the electron flow direction of GSH for O2 reduction and ROS generation rather than ROS clearance by using P(DA-Fc) nanoparticles, which are polymerized from ferrocenecarboxylic acid (Fc) coupled dopamine. P(DA-Fc) NPs with phenol-quinone conversion ability mimic NOX enzyme to deprive electrons from GSH to reduce O2 for H2O2 generation; the following •OH release can be triggered by Fc. Semiquinone radicals in P(DA-Fc) are significantly enhanced after GSH treatment, further demonstrated with strong single-electron reduction ability by calculation. In vitro and in vivo experiments indicate that P(DA-Fc) can consume intrinsic GSH to produce endogenous ROS; ROS generation strongly depends on GSH/pH level and eventually causes tumor cell death. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to ROS producer, explores new roles of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve the efficiency of CDT. STATEMENT OF SIGNIFICANCE: P(DA-Fc) nanoparticles performing tumor microenvironment response capacity and tumor reductive power utilize ability were fabricated for CDT tumor suppression. After endocytosis by tumor cells, P(DA-Fc) deprived GSH of electrons for H2O2 and •OH release, mimicking the intrinsic ROS production conducted by NADPH, further inducing tumor cell necrosis and apoptosis. Our work makes the first attempt to reverse the function of GSH from ROS scavenger to producer, explores new functions of PDA-based nanomaterials in CDT beyond photothermal reagents and drug carriers, and provides a new strategy to improve CDT efficiency.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Electrones , Especies Reactivas de Oxígeno , Polifenoles/farmacología , Peróxido de Hidrógeno , Oxidación-Reducción , Portadores de Fármacos , Línea Celular Tumoral , Microambiente Tumoral , Glutatión , Neoplasias/tratamiento farmacológico
11.
Adv Mater ; 35(18): e2211597, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36746119

RESUMEN

The spatiotemporal characterization of signaling crosstalk between subcellular organelles is crucial for the therapeutic effect of malignant tumors. Blocking interactive crosstalk in this fashion is significant but challenging. Herein, a communication interception strategy is reported, which blocks spatiotemporal crosstalk between subcellular organelles for cancer therapy with underlying molecular mechanisms. Briefly, amorphous-core@crystalline-shell Fe@Fe3 O4 nanoparticles (ACFeNPs) are fabricated to specifically block the crosstalk between lysosomes and endoplasmic reticulum (ER) by hydroxyl radicals generated along with their trajectory through heterogeneous Fenton reaction. ACFeNPs initially enter lysosomes and trigger autophagy, then continuous lysosomal damage blocks the generation of functional autolysosomes, which mediates ER-lysosome crosstalk, thus the autophagy is paralyzed. Thereafter, released ACFeNPs from lysosomes induce ER stress. Without the alleviation by autophagy, the ER-stress-associated apoptotic pathway is fully activated, resulting in a remarkable therapeutic effect. This strategy provides a wide venue for nanomedicine to exert biological advantages and confers new perspective for the design of novel anticancer drugs.


Asunto(s)
Estrés del Retículo Endoplásmico , Neoplasias , Neoplasias/metabolismo , Autofagia , Lisosomas/metabolismo , Humanos
12.
ACS Nano ; 17(14): 13872-13884, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37458394

RESUMEN

"Structure subserves function" is one fundamental biological maxim, and so the biological membrane that delimits the regions primarily serves as the margin between life and death for individual cells. Here, an Oswald ripening mechanism-guided solvothermal method was proposed for the synthesis of uniform MnS nanocapsules assembled with metastable γ-MnS nanocrystals. Through designing the physicochemical properties, MnS nanocapsules would disaggregate into small γ-MnS nanocrystals in a tumor acidic environment, with the surface potential switched from negative to positive, thus showing conspicuous delivery performance. More significantly, the specific accumulation of Mn2+ in mitochondria was promoted due to the downregulation of mitochondrial calcium uptake 1 (MICU1) by the formed H2S, thus leading to serious mitochondrial Mn-poisoning for membrane permeability increase and then tumor apoptosis. This study provides a synthesis strategy of metal sulfide nanocapsules and encourages multidisciplinary researchers to focus on ion-cancer crosstalk for the development of an antitumor strategy.


Asunto(s)
Membranas Mitocondriales , Nanocápsulas , Membranas Mitocondriales/metabolismo , Mitocondrias , Apoptosis , Permeabilidad
13.
Biosens Bioelectron ; 237: 115543, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37499378

RESUMEN

DNA intercalation has increasingly been studied for various scenario implementations due to the diverse functions of DNA/intercalators. Nascent organic photoelectrochemical transistor (OPECT) biosensing taking place in organic electronics and photoelectrochemical bioanalysis represents a promising technological frontier in the arena. In this work, we first devise DNA intercalation-enabled OPECT for miRNA detection with a superior gain up to 17100. Intercalation of [Ru(bpy)2dppz]2+ within the miRNA-initiated hybrid chain reaction (HCR)-derived duplex DNA is realized for producing anodic photocurrent upon light stimulation, causing the corresponding target-dependent alternation in gate voltage (VG) and hence the modulated channel current (IDS) of poly (3,4-ethylenedioxythiophene) doped with poly (styrene sulfonate) (PEDOT:PSS) under specific drain voltage (VDS) for quantitative miRNA-21 analysis, which shows a wide linear relationship and a low detection limit of 5.5 × 10-15 mol L-1. This study features the DNA intercalation-enabled organic electronics with superior gain and is envisaged to attract more attention to explore DNA adducts for innovative bioelectronics and biosensing, given the diverse DNA binders with multiple functions.


Asunto(s)
Técnicas Biosensibles , MicroARNs , ADN/análisis , Estireno , Sustancias Intercalantes
14.
Adv Sci (Weinh) ; 10(34): e2304668, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870166

RESUMEN

Positive computed tomography (CT) contrast nanoagent has significant applications in diagnosing tumors. However, the sensitive differentiation between hepatoma and normal liver tissue remains challenging. This challenge arises primarily because both normal liver and hepatoma tissues capture the nanoagent, resulting in similar positive CT contrasts. Here, a strategy for fusing positive and negative CT contrast nanoagent is proposed to detect hepatoma. A nanoagent Hf-MOF@AB@PVP initially generates a positive CT contrast signal of 120.3 HU in the liver. Subsequently, it can specifically respond to the acidic microenvironment of hepatoma to generate H2 , further achieving a negative contrast of -96.0 HU. More importantly, the relative position between the negative and positive signals area is helpful to determine the location of hepatoma and normal liver tissues. The distinct contrast difference of 216.3 HU and relative orientation between normal liver and tumor tissues are meaningful to sensitively distinguish hepatoma from normal liver tissue utilizing CT imaging.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Neoplasias Hepáticas/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos , Medios de Contraste , Microambiente Tumoral
15.
ACS Sens ; 8(4): 1835-1840, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37011305

RESUMEN

Organic photoelectrochemical transistor (OPECT) biosensing represents a new platform interfacing optoelectronics and biological systems with essential amplification, which, nevertheless, are concentrated on depletion-type operation to date. Here, a polymer dot (Pdot)-gated accumulation-type OPECT biosensor is devised and applied for sensitive urea detection. In such a device, the as-designed Pdot/poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) is validated as a superior gating module against the diethylenetriamine (DETA) de-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) channel, and the urea-dependent status of Pdots has been shown to be sensitively correlated with the device's response. High-performance urea detection is thus realized with a wide linear range of 1 µM-50 mM and a low detection limit of 195 nM. Given the diversity of the Pdot family and its immense interactions with other species, this work represents a generic platform for developing advanced accumulation-type OPECT and beyond.


Asunto(s)
Técnicas Biosensibles , Polímeros , Urea , Estireno , Oro
16.
ACS Nano ; 16(3): 4217-4227, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35254050

RESUMEN

B-mode ultrasound imaging is a significant anatomic technique in clinic, which can display the anatomic variation in tissues. However, it is difficult to evaluate the functional state of organs and display the physiological information in organisms such as the tumor acidic microenvironment (TME). Herein, inspired by the phenomenon of sonographic acoustic shadow during detecting calculus in clinic, a strategy of self-enhanced acoustic impedance difference is proposed to monitor the acidic TME. BiF3@PDA@PEG (BPP) nanoparticles can self-aggregate in a specific response to the acidic TME to form huge "stones" BiF3@PDA, resulting in an increase of local tumor density, and further causing a significant acoustic impedance difference. In in vitro experiments, the enhanced ultrasound signals change from 15.2 to 196.4 dB, which can discriminate different pH values from 7.0 to 5.0, and the sensitivity can reach to 0.2 value. In in vivo experiments, the enhanced ultrasound signal is 107.7 dB after BPP self-aggregated, displaying the weak acidic TME that has a close relationship with the size and species of the tumor. More importantly, the accuracy is away from the interference of pressure because huge "stones" BiF3@PDA change little. However, SonoVue microbubbles will diffuse and rupture under pressure, which results in false positive signals. To sum up, this strategy will be helpful to the further development of ultrasound molecular imaging.


Asunto(s)
Nanopartículas , Microambiente Tumoral , Acústica , Impedancia Eléctrica , Microburbujas , Nanopartículas/química
17.
Adv Sci (Weinh) ; 9(23): e2201232, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35712774

RESUMEN

In the field of nanomedicine, there is a tendency of matching designed nanomaterials with a suitable type of orthotopic cancer model, not just a casual subcutaneous one. Under this condition, knowing the specific features of the chosen cancer model is the priority, then introducing a proper therapy strategy using designed nanomaterials. Here, the Fenton chemistry is combined with zinc peroxide nanoparticles in the treatment of orthotopic liver cancer which has a "chemical factory" including that liver is the main place for iron storage, metabolism, and also the main metabolic sites for the majority of ingested substances, guaranteeing customized and enhanced chemodynamic therapy and normal liver cells protection as well. The good results in vitro and in vivo can set an inspiring example for exploring and utilizing suitable nanomaterials in corresponding cancer models, ensuring well-fitness of nanomaterials for disease and satisfactory therapeutic effect.


Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Nanoestructuras , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Nanomedicina/métodos , Fototerapia
18.
Adv Mater ; 34(17): e2108653, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35244228

RESUMEN

The tumor microenvironment is a complex milieu where neurons constitute an important non-neoplastic cell type. From "cancer neuroscience," the crosstalk between tumors and neurons favors the rapid growth of both, making the cancer-nerve interaction a reciprocally beneficial process. Thus, cancer-nerve crosstalk may provide new targets for therapeutic intervention against cancer and cancer-related symptoms. We proposed a nerve-cancer crosstalk blocking strategy for metastatic bone cancer pain treatment, achieved by Mg/Al layered-double-hydroxide nanoshells (Mg/Al-LDH) with AZ-23 loaded inside and alendronate decorated outside. The pain-causing H+ is rapidly eliminated by the LDH, with neurogenesis inhibited by the antagonist AZ-23. As positive feedback, the decreased pain reverses the nerve-to-cancer Ca2+ crosstalk-related cell cycle, dramatically inhibiting tumor growth. All experiments confirm the improved pain threshold and enhanced tumor inhibition. The study may inspire multidisciplinary researchers to focus on cancer-nerve crosstalk for treating cancer and accompanied neuropathic diseases.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/patología , Dolor en Cáncer/tratamiento farmacológico , Dolor en Cáncer/metabolismo , Humanos , Neuronas/metabolismo , Dolor/metabolismo , Microambiente Tumoral
19.
Nat Commun ; 13(1): 7353, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446788

RESUMEN

Bacteria and excessive inflammation are two main factors causing non-healing wounds. However, current studies have mainly focused on the inhibition of bacteria survival for wound healing while ignoring the excessive inflammation induced by dead bacteria-released lipopolysaccharide (LPS) or peptidoglycan (PGN). Herein, a boron-trapping strategy has been proposed to prevent both infection and excessive inflammation by synthesizing a class of reactive metal boride nanoparticles (MB NPs). Our results show that the MB NPs are gradually hydrolyzed to generate boron dihydroxy groups and metal cations while generating a local alkaline microenvironment. This microenvironment greatly enhances boron dihydroxy groups to trap LPS or PGN through an esterification reaction, which not only enhances metal cation-induced bacterial death but also inhibits dead bacteria-induced excessive inflammation both in vitro and in vivo, finally accelerating wound healing. Taken together, this boron-trapping strategy provides an approach to the treatment of bacterial infection and the accompanying inflammation.


Asunto(s)
Nanopartículas del Metal , Infección de Heridas , Humanos , Peptidoglicano , Lipopolisacáridos/toxicidad , Boro/farmacología , Cicatrización de Heridas , Bacterias , Ligando de CD40 , Inflamación , Compuestos de Boro
20.
Aging Cell ; 20(1): e13286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33369003

RESUMEN

Alzheimer's disease (AD) is a progressively neurodegenerative disease characterized by cognitive deficits and alteration of personality and behavior. As yet, there is no efficient treatment for AD. 5HT2A receptor (5HT2A R) is a subtype of 5HT2 receptor belonging to the serotonin receptor family, and its antagonists have been clinically used as antipsychotics to relieve psychopathy. Here, we discovered that clinically first-line antiallergic drug desloratadine (DLT) functioned as a selective antagonist of 5HT2A R and efficiently ameliorated pathology of APP/PS1 mice. The underlying mechanism has been intensively investigated by assay against APP/PS1 mice with selective 5HT2A R knockdown in the brain treated by adeno-associated virus (AAV)-ePHP-si-5HT2A R. DLT reduced amyloid plaque deposition by promoting microglial Aß phagocytosis and degradation, and ameliorated innate immune response by polarizing microglia to an anti-inflammatory phenotype. It stimulated autophagy process and repressed neuroinflammation through 5HT2A R/cAMP/PKA/CREB/Sirt1 pathway, and activated glucocorticoid receptor (GR) nuclear translocation to upregulate the transcriptions of phagocytic receptors TLR2 and TLR4 in response to microglial phagocytosis stimulation. Together, our work has highly supported that 5HT2A R antagonism might be a promising therapeutic strategy for AD and highlighted the potential of DLT in the treatment of this disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antialérgicos/uso terapéutico , Antagonistas de los Receptores Histamínicos H1 no Sedantes/uso terapéutico , Loratadina/análogos & derivados , Microglía/metabolismo , Animales , Antialérgicos/farmacología , Modelos Animales de Enfermedad , Antagonistas de los Receptores Histamínicos H1 no Sedantes/farmacología , Loratadina/farmacología , Loratadina/uso terapéutico , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA