Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Biol Chem ; 290(5): 3149-60, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512381

RESUMEN

Microtubule affinity-regulating kinase 2 (MARK2)/PAR-1b and protein kinase A (PKA) are both involved in the regulation of microtubule stability and neurite outgrowth, but whether a direct cross-talk exists between them remains unclear. Here, we found the disruption of microtubule and neurite outgrowth induced by MARK2 overexpression was blocked by active PKA. The interaction between PKA and MARK2 was confirmed by coimmunoprecipitation and immunocytochemistry both in vitro and in vivo. PKA was found to inhibit MARK2 kinase activity by phosphorylating a novel site, serine 409. PKA could not reverse the microtubule disruption effect induced by a serine 409 to alanine (Ala) mutant of MARK2 (MARK2 S409A). In contrast, mutation of MARK2 serine 409 to glutamic acid (Glu) (MARK2 S409E) did not affect microtubule stability and neurite outgrowth. We propose that PKA functions as an upstream inhibitor of MARK2 in regulating microtubule stability and neurite outgrowth by directly interacting and phosphorylating MARK2.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo , Neuritas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo , Animales , Células HEK293 , Humanos , Fosforilación , Ratas
2.
Genomics Proteomics Bioinformatics ; 20(4): 597-613, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33607295

RESUMEN

AMP-activated protein kinase (AMPK) is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates. Emerging studies have demonstrated the regulatory roles of AMPK in DNA repair, but the underlying mechanisms remain to be fully understood. Herein, using mass spectrometry-based proteomic technologies, we systematically investigate the regulatory network of AMPK in DNA damage response (DDR). Our system-wide phosphoproteome study uncovers a variety of newly-identified potential substrates involved in diverse biological processes, whereas our system-wide histone modification analysis reveals a link between AMPK and histone acetylation. Together with these findings, we discover that AMPK promotes apoptosis by phosphorylating apoptosis-stimulating of p53 protein 2 (ASPP2) in an irradiation (IR)-dependent manner and regulates histone acetylation by phosphorylating histone deacetylase 9 (HDAC9) in an IR-independent manner. Besides, we reveal that disrupting the histone acetylation by the bromodomain BRD4 inhibitor JQ-1 enhances the sensitivity of AMPK-deficient cells to IR. Therefore, our study has provided a resource to investigate the interplay between phosphorylation and histone acetylation underlying the regulatory network of AMPK, which could be beneficial to understand the exact role of AMPK in DDR.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Histonas , Proteínas Quinasas Activadas por AMP/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Acetilación , Proteómica , Factores de Transcripción/metabolismo , Fosforilación/fisiología , Daño del ADN
3.
Cell Rep ; 34(7): 108713, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33596428

RESUMEN

AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Reparación del ADN por Unión de Extremidades , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Inestabilidad Genómica , Humanos , Fosforilación
4.
Chem Sci ; 8(12): 8012-8018, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29568448

RESUMEN

Unveiling the detailed roles of glutathione (GSH) in chemoresistance necessitates a reliable assay for its detection in intact live specimens. Herein, by taking advantage of the susceptibility of electron-poor Csp2 -Ssufinyl bond to GSH nucleophilic attack, we developed a naphthalimide-sulfoxide based fluorogenic probe (Na-8) applicable for tracking endogenous GSH fluctuation in live cells. Na-8 features a high degree of sensitivity towards GSH as demonstrated by its utmost 2200-fold fluorogenic response. As a proof of concept, Na-8 has been applied to image GSH in liver cancer HepG2 cells with the normal L02 cell counterparts serving as a control, and elevated GSH level was observed in HepG2 in contrast to L02. Further experiments showed that this elevated GSH level was involved in doxorubicin-resistance but not in cisplatin-resistance. Noteworthy, monitoring GSH change in HepG2 and L02 cells in response to doxorubicin treatment revealed that while normal cells showed a burst of GSH in adaption to doxorubicin treatment, no significant change was detected in HepG2 cells, suggesting that HepG2 cells have been preconditioned by their intrinsic oxidative stress which confers drug-resistance. Given the observed sensitivity and spatiotemporal resolution, Na-8 should hold promise for future study on the detailed roles of GSH in drug-resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA