Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7913): 368-374, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35418681

RESUMEN

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Asunto(s)
Antirretrovirales , Anticuerpos Anti-VIH , Infecciones por VIH , VIH-1 , Carga Viral , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , Humanos , Provirus/efectos de los fármacos , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico , Latencia del Virus/efectos de los fármacos
2.
J Infect Dis ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657001

RESUMEN

BACKGROUND: Although antivirals remain important for the treatment COVID-19, methods to assess treatment efficacy are lacking. Here, we investigated the impact of remdesivir on viral dynamics and their contribution to understanding antiviral efficacy in the multicenter ACTT-1 clinical trial that randomized patients to remdesivir or placebo. METHODS: Longitudinal specimens collected during hospitalization from a substudy of 642 COVID-19 patients were measured for viral RNA (upper respiratory tract and plasma), viral nucleocapsid antigen (serum), and host immunologic markers. Associations with clinical outcomes and response to therapy were assessed. RESULTS: Higher baseline plasma viral loads were associated with poorer clinical outcomes, and decreases in viral RNA and antigen in blood but not the upper respiratory tract correlated with enhanced benefit from remdesivir. The treatment effect of remdesivir was most pronounced in patients with elevated baseline nucleocapsid antigen levels: the recovery rate ratio was 1.95 (95%CI 1.40-2.71) for levels >245 pg/ml vs 1.04 (95%CI 0.76-1.42) for levels < 245 pg/ml. Remdesivir also accelerated the rate of viral RNA and antigen clearance in blood, and patients whose blood levels decreased were more likely to recover and survive. CONCLUSIONS: Reductions in SARS-CoV-2 RNA and antigen levels in blood correlated with clinical benefit from antiviral therapy.

3.
J Infect Dis ; 228(Suppl 2): S126-S135, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650236

RESUMEN

BACKGROUND: Prospective evaluations of long COVID in outpatients with coronavirus disease 2019 (COVID-19) are lacking. We aimed to determine the frequency and predictors of long COVID after treatment with the monoclonal antibody bamlanivimab in ACTIV-2/A5401. METHODS: Data were analyzed from participants who received bamlanivimab 700 mg in ACTIV-2 from October 2020 to February 2021. Long COVID was defined as the presence of self-assessed COVID symptoms at week 24. Self-assessed return to pre-COVID health was also examined. Associations were assessed by regression models. RESULTS: Among 506 participants, median age was 51 years. Half were female, 5% Black/African American, and 36% Hispanic/Latino. At 24 weeks, 18% reported long COVID and 15% had not returned to pre-COVID health. Smoking (adjusted risk ratio [aRR], 2.41 [95% confidence interval {CI}, 1.34- 4.32]), female sex (aRR, 1.91 [95% CI, 1.28-2.85]), non-Hispanic ethnicity (aRR, 1.92 [95% CI, 1.19-3.13]), and presence of symptoms 22-28 days posttreatment (aRR, 2.70 [95% CI, 1.63-4.46]) were associated with long COVID, but nasal severe acute respiratory syndrome coronavirus 2 RNA was not. CONCLUSIONS: Long COVID occurred despite early, effective monoclonal antibody therapy and was associated with smoking, female sex, and non-Hispanic ethnicity, but not viral burden. The strong association between symptoms 22-28 days after treatment and long COVID suggests that processes of long COVID start early and may need early intervention. CLINICAL TRIALS REGISTRATION: NCT04518410.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anticuerpos Monoclonales , Anticuerpos Monoclonales Humanizados/efectos adversos
4.
Clin Infect Dis ; 77(7): 941-949, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279602

RESUMEN

BACKGROUND: Camostat inhibits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in vitro. We studied the safety and efficacy of camostat in ACTIV-2/A5401, a phase 2/3 platform trial of therapeutics for COVID-19 in nonhospitalized adults. METHODS: We conducted a phase 2 study in adults with mild-to-moderate COVID-19 randomized to oral camostat for 7 days or a pooled placebo arm. Primary outcomes were time to improvement in COVID-19 symptoms through day 28, proportion of participants with SARS-CoV-2 RNA below the lower limit of quantification (LLoQ) from nasopharyngeal swabs through day 14, and grade ≥3 treatment-emergent adverse events (TEAEs) through day 28. RESULTS: Of 216 participants (109 randomized to camostat, 107 to placebo) who initiated study intervention, 45% reported ≤5 days of symptoms at study entry and 26% met the protocol definition of higher risk of progression to severe COVID-19. Median age was 37 years. Median time to symptom improvement was 9 days in both arms (P = .99). There were no significant differences in the proportion of participants with SARS-CoV-2 RNA

Asunto(s)
COVID-19 , Humanos , Adulto , SARS-CoV-2 , ARN Viral , Factores de Tiempo , Resultado del Tratamiento
5.
J Infect Dis ; 222(11): 1837-1842, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32496516

RESUMEN

AIDS Clinical Trials Group study A5308 found reduced T-cell activation and exhaustion in human immunodeficiency virus (HIV) controllers start antiretroviral therapy (ART). We further assessed HIV-specific T-cell responses and post-ART viral loads. Before ART, the 31% of participants with persistently undetectable viremia had more robust HIV-specific T-cell responses. During ART, significant decreases were observed in a broad range of T-cell responses. Eight controllers in A5308 and the Study of the Consequences of the Protease Inhibitor Era (SCOPE) cohort showed no viremia above the level of quantification in the first 12 weeks after ART discontinuation. ART significantly reduced HIV-specific T-cell responses in HIV controllers but did not adversely affect controller status after ART discontinuation.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , VIH-1/efectos de los fármacos , Linfocitos T/inmunología , Adulto , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Estudios de Cohortes , Inhibidores de la Proteasa del VIH/uso terapéutico , Humanos , Activación de Linfocitos/efectos de los fármacos , Carga Viral/efectos de los fármacos , Viremia/inmunología
10.
J Hepatol ; 62(5): 1024-32, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25481564

RESUMEN

BACKGROUND &/AIMS: The broadly used antiviral cytokine interferon-α (IFNα)'s mechanisms of action against HCV infection are not well understood. We previously identified SART1, a host protein involved in RNA splicing and pre-mRNA processing, as a regulator of IFN's antiviral effects. We hypothesized that SART1 regulates antiviral IFN effector genes (IEGs) through mRNA processing and splicing. METHODS: We performed siRNA knockdown in HuH7.5.1 cells and mRNA-sequencing with or without IFN treatment. Selected gene mRNA variants and their proteins, together with HCV replication, were monitored by qRT-PCR and Western blot in HCV OR6 replicon cells and the JFH1 HCV infectious model. RESULTS: We identified 419 genes with a greater than 2-fold expression difference between Neg siRNA and SART1 siRNA treated cells in the presence or absence of IFN. Bioinformatic analysis identified at least 10 functional pathways. SART1 knockdown reduced classical IFN stimulating genes (ISG) mRNA transcription including MX1 and OAS3. However, SART1 did not affect JAK-STAT pathway gene mRNA expression and IFN stimulated response element (ISRE) signaling. We identified alternative mRNA splicing events for several genes, including EIF4G3, GORASP2, ZFAND6, and RAB6A that contribute to their antiviral effects. EIF4G3 and GORASP2 were also confirmed to have anti-HCV effect. CONCLUSIONS: The spliceosome factor SART1 is not IFN-inducible but is an IEG. SART1 exerts its anti-HCV action through direct transcriptional regulation for some ISGs and alternative splicing for others, including EIF4G3, GORASP2. SART1 does not have an effect on IFN receptor or canonical signal transduction components. Thus, SART1 regulates ISGs using a novel, non-classical mechanism.


Asunto(s)
Antígenos de Neoplasias/genética , Hepacivirus/fisiología , Hepatitis C , Interferón-alfa , Empalme del ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Empalmosomas/fisiología , Antivirales/metabolismo , Antivirales/farmacología , Técnicas de Silenciamiento del Gen , Hepatitis C/genética , Hepatitis C/virología , Humanos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón , Interferón-alfa/metabolismo , Interferón-alfa/farmacología , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Replicación Viral/fisiología
11.
Hepatology ; 59(4): 1250-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23913866

RESUMEN

UNLABELLED: Several genome-wide association studies (GWAS) have identified a genetic polymorphism associated with the gene locus for interleukin 28B (IL28B), a type III interferon (IFN), as a major predictor of clinical outcome in hepatitis C. Antiviral effects of the type III IFN family have previously been shown against several viruses, including hepatitis C virus (HCV), and resemble the function of type I IFN including utilization of the intracellular Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway. Effects unique to IL28B that would distinguish it from IFN-α are not well defined. By analyzing the transcriptomes of primary human hepatocytes (PHH) treated with IFN-α or IL28B, we sought to identify functional differences between IFN-α and IL28B to better understand the roles of these cytokines in the innate immune response. Although our data did not reveal distinct gene signatures, we detected striking kinetic differences between IFN-α and IL28B stimulation for interferon stimulated genes (ISGs). While gene induction was rapid and peaked at 8 hours of stimulation with IFN-α in PHH, IL28B produced a slower, but more sustained increase in gene expression. We confirmed these findings in the human hepatoma cell line Huh7.5.1. Interestingly, in HCV-infected cells the rapid response after stimulation with IFN-α was blunted, and the induction pattern resembled that caused by IL28B. CONCLUSION: The kinetics of gene induction are fundamentally different for stimulations with either IFN-α or IL28B in hepatocytes, suggesting distinct roles of these cytokines within the immune response. Furthermore, the observed differences are substantially altered by infection with HCV.


Asunto(s)
Carcinoma Hepatocelular/epidemiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hepatitis C/epidemiología , Hepatocitos/metabolismo , Interferón-alfa/farmacología , Interleucinas/farmacología , Neoplasias Hepáticas/epidemiología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Comorbilidad , Relación Dosis-Respuesta a Droga , Hepatitis C/metabolismo , Hepatitis C/patología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Interferones , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fosforilación , Factor de Transcripción STAT1/metabolismo , Factores de Tiempo , Transcriptoma/efectos de los fármacos
12.
Gastroenterology ; 144(7): 1438-49, 1449.e1-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23462180

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease. Interferon-α (IFNα) is an important component of anti-HCV therapy; it up-regulates transcription of IFN-stimulated genes, many of which have been investigated for their antiviral effects. However, all of the genes required for the antiviral function of IFNα (IFN effector genes [IEGs]) are not known. IEGs include not only IFN-stimulated genes, but other nontranscriptionally induced genes that are required for the antiviral effect of IFNα. In contrast to candidate approaches based on analyses of messenger RNA (mRNA) expression, identification of IEGs requires a broad functional approach. METHODS: We performed an unbiased genome-wide small interfering RNA screen to identify IEGs that inhibit HCV. Huh7.5.1 hepatoma cells were transfected with small interfering RNAs incubated with IFNα and then infected with JFH1 HCV. Cells were stained using HCV core antibody, imaged, and analyzed to determine the percent infection. Candidate IEGs detected in the screen were validated and analyzed further. RESULTS: The screen identified 120 previously unreported IEGs. From these, we more fully evaluated the following: asparagine-linked glycosylation 10 homolog (yeast, α-1,2-glucosyltransferase); butyrylcholinesterase; dipeptidyl-peptidase 4 (CD26, adenosine deaminase complexing protein 2); glucokinase (hexokinase 4) regulator; guanylate cyclase 1, soluble, ß 3; MYST histone acetyltransferase 1; protein phosphatase 3 (formerly 2B), catalytic subunit, ß isoform; peroxisomal proliferator-activated receptor-γ-DBD-interacting protein 1; and solute carrier family 27 (fatty acid transporter), member 2; and demonstrated that they enabled IFNα-mediated suppression of HCV at multiple steps of its life cycle. Expression of these genes had more potent effects against flaviviridae because a subset was required for IFNα to suppress dengue virus but not influenza A virus. In addition, many of the host genes detected in this screen (92%) were not transcriptionally stimulated by IFNα; these genes represent a heretofore unknown class of non-IFN-stimulated gene IEGs. CONCLUSIONS: We performed a whole-genome loss-of-function screen to identify genes that mediate the effects of IFNα against human pathogenic viruses. We found that IFNα restricts HCV via actions of general and specific IEGs.


Asunto(s)
Antivirales/uso terapéutico , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Interferón-alfa/uso terapéutico , Replicación Viral/genética , Hepacivirus/efectos de los fármacos , Humanos , ARN Viral/genética , Replicación Viral/efectos de los fármacos
13.
J Hepatol ; 59(5): 942-8, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23831117

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) is a major cause of chronic liver disease worldwide. The biological and therapeutic importance of host cellular cofactors for viral replication has been recently appreciated. Here we examined the roles of SNF1/AMP kinase-related kinase (SNARK) in HCV replication and pathogenesis. METHODS: The JFH1 infection system and the full-length HCV replicon OR6 cell line were used. Gene expression was knocked down by siRNAs. SNARK mutants were created by site-directed mutagenesis. Intracellular mRNA levels were measured by qRT-PCR. Endogenous and overexpressed proteins were detected by Western blot analysis and immunofluorescence. Transforming growth factor (TGF)-ß signaling was monitored by a luciferase reporter construct. Liver biopsy samples from HCV-infected patients were analyzed for SNARK expression. RESULTS: Knockdown of SNARK impaired viral replication, which was rescued by wild type SNARK but not by unphosphorylated or kinase-deficient mutants. Knockdown and overexpression studies demonstrated that SNARK promoted TGF-ß signaling in a manner dependent on both its phosphorylation and kinase activity. In turn, chronic HCV replication upregulated the expression of SNARK in patients. Further, the SNARK kinase inhibitor metformin suppressed both HCV replication and SNARK-mediated enhancement of TGF-ß signaling. CONCLUSIONS: Thus reciprocal regulation between HCV and SNARK promotes TGF-ß signaling, a major driver of hepatic fibrogenesis. These findings suggest that SNARK will be an attractive target for the design of novel host-directed antiviral and antifibrotic drugs.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/etiología , Proteínas Serina-Treonina Quinasas/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/fisiología , Replicación Viral/fisiología , Biopsia , Línea Celular , Regulación de la Expresión Génica/efectos de los fármacos , Hepatitis C/fisiopatología , Humanos , Hígado/patología , Hígado/virología , Metformina/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/farmacología
14.
J Virol ; 86(16): 8581-91, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22674974

RESUMEN

Responses to alpha interferon (IFN-α)-based treatment are dependent on both host and viral factors and vary markedly among patients infected with different hepatitis C virus (HCV) genotypes (GTs). Patients infected with GT3 viruses consistently respond better to IFN treatment than do patients infected with GT1 viruses. The mechanisms underlying this difference are not well understood. In this study, we sought to determine the effects of HCV NS5A proteins from different genotypes on IFN signaling. We found that the overexpression of either GT1 or GT3 NS5A proteins significantly inhibited IFN-induced IFN-stimulated response element (ISRE) signaling, phosphorylated STAT1 (P-STAT1) levels, and IFN-stimulated gene (ISG) expression compared to controls. GT1 NS5A protein expression exhibited stronger inhibitory effects on IFN signaling than did GT3 NS5A protein expression. Furthermore, GT1 NS5A bound to STAT1 with a higher affinity than did GT3 NS5A. Domain mapping revealed that the C-terminal region of NS5A conferred these inhibitory effects on IFN signaling. The overexpression of HCV NS5A increased HCV replication levels in JFH1-infected cells through the further reduction of levels of P-STAT1, ISRE signaling, and downstream ISG responses. We demonstrated that the overexpression of GT1 NS5A proteins resulted in less IFN responsiveness than did the expression of GT3 NS5A proteins through stronger binding to STAT1. We confirmed that GT1 NS5A proteins exerted stronger IFN signaling inhibition than did GT3 NS5A proteins in an infectious recombinant JFH1 virus. The potent antiviral NS5A inhibitor BMS-790052 did not block NS5A-mediated IFN signaling suppression in an overexpression model, suggesting that NS5A's contributions to replication are independent of its subversive action on IFN. We propose a model in which the binding of the C-terminal region of NS5A to STAT1 leads to decreased levels of P-STAT1, ISRE signaling, and ISG transcription and, ultimately, to preferential GT1 resistance to IFN treatment.


Asunto(s)
Hepacivirus/patogenicidad , Interacciones Huésped-Patógeno , Interferón Tipo I/inmunología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Proteínas no Estructurales Virales/metabolismo , Humanos , Modelos Biológicos , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas
15.
Front Med (Lausanne) ; 10: 1095828, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36910479

RESUMEN

Background: This study aimed to investigate the efficacy and safety of subcutaneous injection of peginterferon lambda in patients hospitalized with COVID-19. Methods: In this study (NCT04343976), patients admitted to hospital with COVID-19 confirmed by RT-PCR from nasopharyngeal swab were randomly assigned within 48 h to receive peginterferon lambda or placebo in a 1:1 ratio. Participants were subcutaneously injected with a peginterferon lambda or saline placebo at baseline and day 7 and were followed up until day 14. Results: We enrolled 14 participants; 6 participants (85.7%) in the peginterferon lambda group and 1 participant (14.3%) in the placebo group were treated with remdesivir prior to enrollment. Fifty percent of participants were SARS-CoV-2 RNA negative at baseline although they tested SARS-CoV-2 RNA positive within 48 h of randomization. Among participants who were SARS-CoV-2 positive at baseline, 2 out of 5 participants (40%) in the peginterferon lambda group became negative at day 14, while 0 out of 2 participants (0%) in the placebo group achieved negativity for SARS-CoV-2 by day 14 (p > 0.05). The median change in viral load (log copies per ml) was +1.72 (IQR -2.78 to 3.19) in the placebo group and -2.22 (IQR -3.24 to 0.55) in the peginterferon lambda group at day 14 (p = 0.24). Symptomatic changes did not differ between the two groups. Peginterferon lambda was well tolerated with a few treatment-related adverse effects. Conclusion: Peginterferon lambda appears to accelerate SARS-CoV-2 viral load decline and improve plasma disease progression markers in hospitalized patients with COVID-19.

16.
medRxiv ; 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37034605

RESUMEN

Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.

17.
Nat Med ; 29(12): 3212-3223, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957382

RESUMEN

Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Masculino , Femenino , VIH-1/genética , Viremia , Provirus/genética , Provirus/metabolismo , Infecciones por VIH/tratamiento farmacológico , Linfocitos T CD4-Positivos , ARN Viral , Carga Viral
18.
Open Forum Infect Dis ; 10(6): ofad290, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37383244

RESUMEN

Background: Clinical trials initiated during emerging infectious disease outbreaks must quickly enroll participants to identify treatments to reduce morbidity and mortality. This may be at odds with enrolling a representative study population, especially when the population affected is undefined. Methods: We evaluated the utility of the Centers for Disease Control and Prevention's COVID-19-Associated Hospitalization Surveillance Network (COVID-NET), the COVID-19 Case Surveillance System (CCSS), and 2020 United States (US) Census data to determine demographic representation in the 4 stages of the Adaptive COVID-19 Treatment Trial (ACTT). We compared the cumulative proportion of participants by sex, race, ethnicity, and age enrolled at US ACTT sites, with respective 95% confidence intervals, to the reference data in forest plots. Results: US ACTT sites enrolled 3509 adults hospitalized with COVID-19. When compared with COVID-NET, ACTT enrolled a similar or higher proportion of Hispanic/Latino and White participants depending on the stage, and a similar proportion of African American participants in all stages. In contrast, ACTT enrolled a higher proportion of these groups when compared with US Census and CCSS. The proportion of participants aged ≥65 years was either similar or lower than COVID-NET and higher than CCSS and the US Census. The proportion of females enrolled in ACTT was lower than the proportion of females in the reference datasets. Conclusions: Although surveillance data of hospitalized cases may not be available early in an outbreak, they are a better comparator than US Census data and surveillance of all cases, which may not reflect the population affected and at higher risk of severe disease.

19.
J Biol Chem ; 286(4): 2665-74, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21098019

RESUMEN

HIV/HCV coinfection leads to accelerated hepatic fibrosis progression, with higher rates of cirrhosis, liver failure, and liver death than does HCV mono-infection. However, the profibrogenic role of HIV on hepatocytes and hepatic stellate cells (HSC) has not been fully clarified. We hypothesized that HIV, HCV induce liver fibrosis through altered regulation of the production of extracellular matrix and matrix metalloproteinases. We examined the fibrogenesis- and fibrolysis-related gene activity in LX2 HSC and Huh7.5.1 cells in the presence of inactivated CXCR4 and CCR5 HIV, as well as HCV JFH1 virus. The role of reactive oxygen species (ROS) upon fibrosis gene expression was assessed using the ROS inhibitor. Fibrosis-related transcripts including procollagen α1(I) (CoL1A), TIMP1, and MMP3 mRNA were measured by qPCR. TIMP1 and MMP3 protein expression were assessed by ELISA. We found that inactivated CXCR4 HIV and CCR5 HIV increased CoL1A, and TIMP1 expression in both HSC and Huh7.5.1 cells; the addition of JFH1 HCV further increased CoL1A and TIMP1 expression. CXCR4 HIV and CCR5 HIV induced ROS production in HSC and Huh7.5.1 cells which was further enhanced by JFH1 HCV. The ROS inhibitor DPI abrogated HIV-and HCV-induced CoL1A and TIMP1 expression. HIV and HCV-induced CoL1A and TIMP1 expression were also blocked by NFκB siRNA. Our data provide further evidence that HIV and HCV independently regulate hepatic fibrosis progression through the generation of ROS; this regulation occurs in an NFκB-dependent fashion. Strategies to limit the viral induction of oxidative stress are warranted to inhibit fibrogenesis.


Asunto(s)
Infecciones por VIH , VIH/metabolismo , Hepacivirus/metabolismo , Hepatitis C , Cirrosis Hepática , FN-kappa B/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Regulación de la Expresión Génica , Infecciones por VIH/complicaciones , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Hepatitis C/complicaciones , Hepatitis C/metabolismo , Hepatitis C/patología , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/virología , Estrés Oxidativo
20.
J Hepatol ; 56(2): 326-33, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21888876

RESUMEN

BACKGROUND & AIMS: The precise mechanisms by which IFN exerts its antiviral effect against HCV have not yet been elucidated. We sought to identify host genes that mediate the antiviral effect of IFN-α by conducting a whole-genome siRNA library screen. METHODS: High throughput screening was performed using an HCV genotype 1b replicon, pRep-Feo. Those pools with replicate robust Z scores ≥2.0 entered secondary validation in full-length OR6 replicon cells. Huh7.5.1 cells infected with JFH1 were then used to validate the rescue efficacy of selected genes for HCV replication under IFN-α treatment. RESULTS: We identified and confirmed 93 human genes involved in the IFN-α anti-HCV effect using a whole-genome siRNA library. Gene ontology analysis revealed that mRNA processing (23 genes, p=2.756e-22), translation initiation (nine genes, p=2.42e-6), and IFN signaling (five genes, p=1.00e-3) were the most enriched functional groups. Nine genes were components of U4/U6.U5 tri-snRNP. We confirmed that silencing squamous cell carcinoma antigen recognized by T cells (SART1), a specific factor of tri-snRNP, abrogates IFN-α's suppressive effects against HCV in both replicon cells and JFH1 infectious cells. We further found that SART1 was not IFN-α inducible, and its anti-HCV effector in the JFH1 infectious model was through regulation of interferon stimulated genes (ISGs) with or without IFN-α. CONCLUSIONS: We identified 93 genes that mediate the anti-HCV effect of IFN-α through genome-wide siRNA screening; 23 and nine genes were involved in mRNA processing and translation initiation, respectively. These findings reveal an unexpected role for mRNA processing in generation of the antiviral state, and suggest a new avenue for therapeutic development in HCV.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/genética , Interacciones Huésped-Patógeno/genética , Interferón-alfa/farmacología , Antígenos de Neoplasias/genética , Línea Celular , Biología Computacional , Genoma Humano , Genómica , Hepacivirus/genética , Hepacivirus/fisiología , Hepatitis C Crónica/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Farmacogenética , ARN Interferente Pequeño/genética , Receptor de Interferón alfa y beta/genética , Replicón , Ribonucleoproteínas Nucleares Pequeñas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA