Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(16): 24360-24374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443536

RESUMEN

Domestic wastewater source-separated treatment has attracted wide attention due to the efficiency improvement of sewage treatment systems, energy saving, resource reuse, and the construction and operation cost saving of pipeline networks. Nonetheless, the excess source-separated urine still demands further harmless treatment. Sequencing batch biofilm reactor (SBBR), a new type of composite biofilm reactor developed by filling different fillers into the sequential batch reactor (SBR) reactor, has higher pollutant removal performance and simpler operation and maintenance. However, the phosphorus removal ability of the SBBR filling with conventional fillers is still limited and needs further improvement. In this study, we developed two new fillers, the self-fabricated filler A and B (SFA/SFB), and compared their source-separated urine treatment performance. Long-term treatment experimental results demonstrated that the SBBR systems with different fillers had good removal performance on the COD and TN in the influent, and the removal rate increased with the increasing HRT. However, only the SBBR system with the SFA showed excellent PO43--P and TP removal performance, with the removal rates being 83.7 ± 11.9% and 77.3 ± 13.7% when the HRT was 1 d. Microbial community analysis results indicated that no special bacteria with strong phosphorus removal ability were present on the surface of the SFA. Adsorption experimental results suggested that the SFA had better adsorption performance for phosphorus than the SFB, but it could not always have stronger phosphorus adsorption and removal performance during long-term operation due to the adsorption saturation. Through a series of characterizations such as SEM, XRD, and BET, it was found that the SFA had a looser structure due to the use of different binder and production processes, and the magnesium in the SFA gradually released and reacted with PO43- and NH4+ in the source-separated urine to form dittmarite and struvite, thus achieving efficient phosphorus removal. This study provides a feasible manner for the efficient treatment of source-separated urine using the SBBR system with self-fabricated fillers.


Asunto(s)
Magnesio , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Fósforo , Reactores Biológicos , Nitrógeno , Excipientes , Biopelículas , Aguas del Alcantarillado/química
2.
Water Res ; 252: 121229, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38324989

RESUMEN

Exploiting electrochemically active materials as flow-anodes can effectively alleviate mass transfer restriction in an electro-oxidation system. However, the electrocatalytic activity and persistence of the conventional flow-anode materials are insufficient, resulting in limited improvement in the electro-oxidation rate and efficiency. Herein, we reported a rational strategy to substantially enhance the electrocatalytic performance of flow-anodes in electro-oxidation by introducing the redox cycle of high-valent metal in a suitable carbon substrate. The characterization suggested that the SnOx-CeOx/carbon black (CB) featured well-distributed morphology, rapid charge transfer, high oxygen evolution potential, and strong water adsorption, and stood out among three kinds of SnOx-CeOx loaded carbon materials. Mechanistic analysis indicated that the redox cycle of Ce species played a key role in accelerating the electron transfer from SnOx to CB directionally and could continuously create the electron-deficient state of the SnOx, thereby sustainably triggering the generation of ·OH. All these features enabled the resulting SnOx-CeOx/CB flow-anode to accomplish a calculated maximum kinetic constant of 0.02461 1/min, a higher current efficiency of 47.1%, and a lower energy consumption of 21.3 kWh/kg COD compared with other conventional flow-anodes reported to date. Additionally, SnOx-CeOx/CB exhibited excellent stability with extremely low leaching concentrations of Sn and Ce ions. This study provides a feasible manner for efficient water decontamination using the electro-oxidation system with SnOx-CeOx/CB.


Asunto(s)
Carbono , Contaminantes Químicos del Agua , Ibuprofeno , Metales/química , Oxidación-Reducción , Agua , Electrodos , Contaminantes Químicos del Agua/química
3.
Water Res ; 245: 120578, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37688857

RESUMEN

Efficient removal of chlorinated organic contaminants using the microbial fuel cell (MFC) provides a promising strategy to alleviate water pollution and energy crisis. However, bio-degradation is challenged by poor biofilm formation and sluggish intracellular electron transfer, causing unsatisfactory electricity generation. To address those problems, a metal-organic framework derivative, Ru-porous TiO2 (Ru-PT) bio-anode has been artfully designed herein for chlorobenzene removal. The Ru-PT bio-anode not only formed a compact anodic biofilm due to the large specific surface area of PT, but more importantly, it introduced special pseudocapacitance-enhanced intracellular electron transfer by slowly implanting Ru4+/Ru3+ redox pair into bacteria. Such a Ru4+/Ru3+ implantation was then found to directionally induce the enrichment of a dual-functional genus (degrader & exoelectrogen), Pseudomonas, thereby enhancing the conversion of bio-refractory chlorophenols towards biodegradable carboxylic acids. These features allowed our MFC to have a resilient chlorobenzene removal and accompanied satisfactory electricity generation, with power density, coulombic efficiency, and turnover frequency reaching 662 mW m-2, 8.7%, and 386,622 s-1, which outcompeted those of other MFCs reported. Further, benefiting from the reversible pseudocapacitance, the Ru-PT bio-anode intriguingly functioned as an internal capacitor for electricity storage. This work provided important insights into cost-effective bio-anode development and offered an avenue for engineering MFC.


Asunto(s)
Fuentes de Energía Bioeléctrica , Clorofenoles , Estructuras Metalorgánicas , Electrones , Electricidad , Electrodos
4.
Water Res ; 242: 120240, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37348419

RESUMEN

Electrocoagulation represents a promising process for hardness removal from cooling water. Nevertheless, the slow hydrolysis reaction severely restricted the floc formation, inhibiting the hardness co-precipitation and simultaneously causing secondary pollution from dissolved Al3+. Inspired by the detrimental membrane fouling phenomenon in conventional electrodialysis, we reported a rational strategy to substantially enhance the hardness removal efficiency in electrocoagulation by introducing a special membrane polarization-catalyzed H2O dissociation herein. Leveraging the electron transfer between functional groups (-SO3- and -N(CH3)3+) of ion exchange membrane (IEM) and surface-adsorbed H2O under the electric field-induced ion depletion scenario, H2O dissociation could be effectively catalyzed, with this catalytic activity more intensive in -SO3- than in -N(CH3)3+. Such a special H2O dissociation beneficially created a widely distributed and well-simulated alkalinity zone around the anodic region of IEM, which promoted the conversion of dissolved Al3+ to floc Al, thereby enhancing floc formation and circumventing secondary pollution. All these features enabled the resulting membrane-enhanced electrocoagulation (MEEC) to achieve a super-prominent hardness removal rate of 318.9 g h-1 m-2 with an ultra-low specific energy consumption of 3.8 kWh kg-1 CaCO3, considerably outperforming those of other conventional hardness removal processes reported to date. Additionally, in conjunction with a facile air-scoured washing method, MEEC exhibited excellent stability and universal applicability in various reaction conditions.


Asunto(s)
Electrocoagulación , Purificación del Agua , Dureza , Agua , Purificación del Agua/métodos , Catálisis , Electrodos
5.
Chemosphere ; 338: 139612, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37482312

RESUMEN

The ubiquitous heavy metal(loid)s (HMs) contamination has triggered great concern about food safety, while sequestration and separation of trace HMs from herbal extracts still calls for appropriate sorbent materials. In this work, gum acacia was modified by cysteine to form a cysteine-acacia intermolecular complex (Cys-GA complex) via facile mechanochemical synthesis, aiming at capturing multiple HMs simultaneously. Preliminary screening confirms the superiority of Cys-CA complex for both cationic and anionic HMs, and determines an optimum Cys/GA mass ratio of 9:1 to achieve high removal capacities for Pb(II) (938 mg g-1), Cd(II) (834 mg g-1), As(V) (496 mg g-1), and Cr(VI) (647 mg g-1) in simulated aqueous solution. The analysis on HMs-exhausted Cys-GA complex indicates that Pb(II), As(V), and Cr(VI) tend to be removed through chelation, electrostatic attraction, and reduction, while Cd(II) can only be chelated or adsorbed by electrostatic interaction. The batch experiments on commercial herbal (e.g. Panax ginseng, Glycine max, Sophora flavescens, Gardenia jasminoides, Cyclocarya paliurus, and Bamboo leaf) extracts indicate that Cys-GA complex can reduce HMs concentration to attain acceptable level that comply with International Organization for Standardization, with negligible negative effect on its active ingredients. This work provides a practical and convenient strategy to purify HMs-contaminated foods without introducing secondary pollution.


Asunto(s)
Cisteína , Metales Pesados , Goma Arábiga , Cadmio , Plomo , Metales Pesados/análisis , Extractos Vegetales , Medición de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA