RESUMEN
OBJECTIVE: Transcutaneous devices have a disadvantage, the dampening effect by soft tissue between the bone and devices. We investigated hearing outcomes with percutaneous and transcutaneous devices using test-bands in an induced unilateral conductive hearing loss. DESIGN: Comparison of hearing outcomes of two devices in the same individuals. STUDY SAMPLE: The right ear was plugged in 30 subjects and a test-band with devices (Cochlear™ Baha® BP110 Power and Sophono® Alpha-2 MPO™) was applied on the right mastoid tip with the left ear masked. Sound-field thresholds, speech recognition thresholds (SRTs), and word recognition scores (WRSs) were compared. RESULTS: Aided thresholds of Sophono were significantly better than those of Baha at most frequencies. Sophono WRSs (86 ± 12%) at 40 dB SPL and SRTs (14 ± 5 dB HL) were significantly better than those (73 ± 24% and 23 ± 8 dB HL) of Baha. However, Sophono WRSs (98 ± 3%) at 60 dB SPL did not differ from Baha WRSs (95 ± 12%). CONCLUSION: Amplifications of the current transcutaneous device were not inferior to those of percutaneous devices with a test-band in subjects with normal bone-conduction thresholds. Since the percutaneous devices can increase the gain when fixed to the skull by eliminating the dampening effect, both devices are expected to provide sufficient hearing amplification.
Asunto(s)
Conducción Ósea , Corrección de Deficiencia Auditiva/instrumentación , Audífonos , Pérdida Auditiva Conductiva/rehabilitación , Personas con Deficiencia Auditiva/rehabilitación , Estimulación Acústica , Adulto , Audiometría de Tonos Puros , Umbral Auditivo , Comprensión , Diseño de Equipo , Femenino , Pérdida Auditiva Conductiva/diagnóstico , Pérdida Auditiva Conductiva/fisiopatología , Pérdida Auditiva Conductiva/psicología , Humanos , Masculino , Personas con Deficiencia Auditiva/psicología , Inteligibilidad del Habla , Percepción del Habla , Prueba del Umbral de Recepción del Habla , Adulto JovenRESUMEN
PURPOSE: It is assumed that preoperative use of a bone-anchored hearing aid (BAHA) test-band will give a patient lower gain compared to real post-operative gain because of the reduction of energy through the scalp when using a test-band. Hearing gains using a BAHA test-band were analyzed in patients with unilateral hearing loss. MATERIALS AND METHODS: Nineteen patients with unilateral sensorineural hearing loss were enrolled. A test-band, which was connected to BAHA Intenso with full-on gain, was put on the mastoid. Conventional air-conduction (AC) pure-tone averages (PTAs) and sound-field PTAs and speech reception thresholds (SRTs) were obtained in conditions A (the better ear naked), B (the better ear plugged), and C (the better ear plugged with a test-band on the poorer mastoid). RESULTS: Air-conduction PTAs of the poorer and better ears were 91 ± 19 and 18 ± 8 dB HL. Sound-field PTAs in condition B were higher than those in condition A (54 vs. 26 dB HL), which means that earplugs can block the sound grossly up to 54 dB HL through the better ears. The aided PTAs (24 ± 6 dB HL) in condition C were similar to those of the better ears in condition A (26±9 dB HL), though condition C showed higher thresholds at 500 Hz and lower thresholds at 1 and 2kHz when compared to condition A. The hearing thresholds using a test-band were similar to the published results of BAHA users with the volume to most comfortable level (MCL). CONCLUSION: Our findings showed that a BAHA test-band on the poorer ear could transmit sound to the cochlea as much as the better ears can hear. The increased functional gain at 1 and 2kHz reflects the technical characteristics of BAHA processor. The reduction of energy through the scalp when using a test-band seems to be offset by the difference of output by setting the volume to full-on gain and using a high-powered speech processor. Preoperative hearing gains using a test-band with full-on gain seems to be similar to the post-operative gains of BAHA users with the volume to MCL.