RESUMEN
We present the first lattice QCD calculation of the universal axial γW-box contribution â¡_{γW}^{VA} to both superallowed nuclear and neutron beta decays. This contribution emerges as a significant component within the theoretical uncertainties surrounding the extraction of |V_{ud}| from superallowed decays. Our calculation is conducted using two domain wall fermion ensembles at the physical pion mass. To construct the nucleon four-point correlation functions, we employ the random sparsening field technique. Furthermore, we incorporate long-distance contributions to the hadronic function using the infinite-volume reconstruction method. Upon performing the continuum extrapolation, we arrive at â¡_{γW}^{VA}=3.65(7)_{lat}(1)_{PT}×10^{-3}. Consequently, this yields a slightly higher value of |V_{ud}|=0.973 86(11)_{exp}(9)_{RC}(27)_{NS}, reducing the previous 2.1σ tension with the CKM unitarity to 1.8σ. Additionally, we calculate the vector γW-box contribution to the axial charge g_{A}, denoted as â¡_{γW}^{VV}, and explore its potential implications.
RESUMEN
We present a lattice QCD calculation of the nucleon electric polarizabilities at the physical pion mass. Our findings reveal the substantial contributions of the Nπ states to these polarizabilities. Without considering these contributions, the lattice results fall significantly below the experimental values, consistent with previous lattice studies. This observation has motivated us to compute both the parity-negative Nπ scattering up to a nucleon momentum of â¼0.5 GeV in the center-of-mass frame and corresponding Nγ^{*}âNπ matrix elements using lattice QCD. Our results confirm that incorporating dynamic Nπ contributions is crucial for a reliable determination of the polarizabilities from lattice QCD. This methodology lays the groundwork for future lattice QCD investigations into various other polarizabilities.
RESUMEN
We develop a method for lattice QCD calculation of the two-photon exchange contribution to the muonic-hydrogen Lamb shift. To demonstrate its feasibility, we present the first lattice calculation with a gauge ensemble at m_{π}=142 MeV. By adopting the infinite-volume reconstruction method along with an optimized subtraction scheme, we obtain with statistical uncertainty ΔE_{TPE}=-28.9(4.9) µeV+93.72 µeV/fm^{2}·⟨r_{p}^{2}⟩, or ΔE_{TPE}=37.4(4.9) µeV, which is consistent with the previous theoretical results in a range of 20-50 µeV.
RESUMEN
We present the first realistic lattice QCD calculation of the γW-box diagrams relevant for beta decays. The nonperturbative low-momentum integral of the γW loop is calculated using a lattice QCD simulation, complemented by the perturbative QCD result at high momenta. Using the pion semileptonic decay as an example, we demonstrate the feasibility of the method. By using domain wall fermions at the physical pion mass with multiple lattice spacings and volumes, we obtain the axial γW-box correction to the semileptonic pion decay, â¡_{γW}^{VA}|_{π}=2.830(11)_{stat}(26)_{syst}×10^{-3}, with the total uncertainty controlled at the level of â¼1%. This study sheds light on the first-principles computation of the γW-box correction to the neutron decay, which plays a decisive role in the determination of |V_{ud}|.
RESUMEN
We present an exploratory lattice QCD calculation of the neutrinoless double beta decay ππâee. Under the mechanism of light-neutrino exchange, the decay amplitude involves significant long-distance contributions. The calculation reported here, with pion masses m_{π}=420 and 140 MeV, demonstrates that the decay amplitude can be computed from first principles using lattice methods. At unphysical and physical pion masses, we obtain that amplitudes are 24% and 9% smaller than the predication from leading order chiral perturbation theory. Our findings provide the lattice QCD inputs and constraints for effective field theory. A follow-on calculation with fully controlled systematic errors will be possible with adequate computational resources.