Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Chem Eng J ; 4912024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38882000

RESUMEN

Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.

2.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-36004607

RESUMEN

Fe3O4 magnetic nanoparticles (MNPs) have attracted tremendous attention due to their superparamagnetic properties, large specific surface area, high biocompatibility, non-toxicity, large-scale production, and recyclability. More importantly, numerous hydroxyl groups (-OH) on the surface of Fe3O4 MNPs can provide coupling sites for various modifiers, forming versatile nanocomposites for applications in the energy, biomedicine, and environmental fields. With the development of science and technology, the potential of nanotechnology in the food industry has also gradually become prominent. However, the application of composite Fe3O4 MNPs in the food industry has not been systematically summarized. Herein, this article reviews composite Fe3O4 MNPs, including their properties, modifications, and physical functions, as well as their applications in the entire food industry from production to processing, storage, and detection. This review lays a solid foundation for promoting food innovation and improving food quality and safety.

3.
Mikrochim Acta ; 189(3): 114, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35190860

RESUMEN

A rapid detection method is introduced for residual trace levels of triazophos in water and agricultural products using an immunoassay based on catalytic hairpin self-assembly (CHA). The gold nanoparticle (AuNPs) surface was modified with triazophos antibody and sulfhydryl bio-barcode, and an immune competition reaction system was established between triazophos and its ovalbumin-hapten (OVA-hapten). The bio-barcode served as a catalyst to continuously induce the CHA reaction to achieve the dual signal amplification. The method does not rely on the participation of enzymes, and the addition of fluorescent materials in the last step avoids interfering factors, such as a fluorescence burst. The emitted fluorescence was detected at 489/521 nm excitation/emission wavelengths. The detection range of the developed method was 0.01-50 ng/mL for triazophos, and the limit of detection (LOD) was 0.0048 ng/mL. The developed method correlates well with the results obtained by LC-MS/MS, with satisfactory recovery and sensitivity. In sum, the designed method is reliable and provides a new approach to detect pesticide residues rapidly and quantitatively.


Asunto(s)
Oro , Nanopartículas del Metal , Cromatografía Liquida , Oro/química , Inmunoensayo/métodos , Nanopartículas del Metal/química , Organotiofosfatos , Espectrometría de Masas en Tándem , Triazoles
4.
J Environ Sci Health B ; 56(1): 64-72, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33236684

RESUMEN

Pesticide registration ensures the safety of agricultural products; however, the backlog of field samples often requires lengthy storage periods. Thus, the stability of pesticide residues in stored samples is required information for pesticide registration. We monitored the degradation rates of fluroxypyr and halosulfuron-methyl in maize straw, mature maize grain, and fresh corn matrices to evaluate their storage stability. Analytes were extracted and cleaned up with a modified Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method and then detected with liquid chromatography tandem-mass spectrometry. We optimized the workflow by testing different clean-up sorbents, LC columns, and chromatographic methods. The linearity correlation coefficients of fluroxypyr and halosulfuron-methyl in the three matrices were ≥0.994. At three fortification levels, the mean recoveries of fluroxypyr and halosulfuron-methyl were 84.2-114.8% and 83.8-105.5% with relative standard deviations of 2.4-9.4% and 2.7-10.2%, respectively. Degradation of the two herbicides in the three matrices was less than 30% over the 70-day storage period, indicating fluroxypyr and halosulfuron-methyl are stable in the tested maize matrices when stored at -20 °C for at least 70 days. This study provides a reference method for pesticide residue analysis and can be used as a guide to develop accurate and reasonable pesticide registration procedures.


Asunto(s)
Acetatos/análisis , Herbicidas/análisis , Piridinas/análisis , Compuestos de Sulfonilurea/análisis , Zea mays/química , Acetatos/química , Cromatografía Liquida , Grano Comestible/química , Almacenamiento de Alimentos , Herbicidas/química , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/química , Piridinas/química , Compuestos de Sulfonilurea/química , Espectrometría de Masas en Tándem , Flujo de Trabajo
5.
Mikrochim Acta ; 186(6): 339, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073796

RESUMEN

A competitive bio-barcode immunoassay is described for the trace detection of parathion in water, pear, cabbage, and rice samples. It is based on amplification by platinum nanoparticle acting as a nanozyme. Gold nanoparticles (AuNPs) were modified with (a) monoclonal antibodies (mAbs) against parathion, and (b) thiolated single-stranded DNA (ssDNA) oligonucleotides. Magnetic nanoparticles (MNPs) were functionalized with ovalbumin coupled with parathion hapten. Parathion and its hapten compete with mAbs on the surface of the AuNPs. Subsequently, the platinum nanoparticles (PtNPs) probe, which was functionalized with the complementary thiolated ssDNA (C-ssDNA), was added to the reaction mixture for the detection of parathion. The signal was catalytically amplified by coupling with platinum nanozyme using teramethylbenzidine and H2O2 as the chromogenic system. The immunoassay has a linear range that extends from 0.01-50 µg·L-1, and the limit of detection is 2.0 × 10-3 µg·L-1. The recoveries and relative standard deviations (RSDs) ranged from 91.1-114.4% and 3.6-15.8%, respectively. The method correlates well with data obtained by gas chromatography-tandem mass spectrometry (GC-MS/MS). Graphical abstract The parathion and the magnetic nanoparticles (MNPs) labelled with hapten-OVA competitively reacted to AuNPs modified with mAbs and thiolated DNA for the detection of parathion. The signal was catalyzed by platinum nanozyme. The limit of detection for parathion is 2.0 ng·L-1.


Asunto(s)
Inmunoensayo/métodos , Nanopartículas del Metal/química , Paratión/análisis , Anticuerpos Monoclonales/inmunología , Bencidinas/química , Brassica/química , Catálisis , Colorimetría/métodos , Oro/química , Peróxido de Hidrógeno/química , Límite de Detección , Oryza/química , Paratión/inmunología , Residuos de Plaguicidas/análisis , Residuos de Plaguicidas/inmunología , Platino (Metal)/química , Pyrus/química , Agua/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/inmunología
6.
Ecotoxicol Environ Saf ; 161: 420-429, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29908453

RESUMEN

Flonicamid, a novel selective systemic pesticide, can effectively control a broad range of insect pests. However, the dissipation behaviors and the terminal residues of flonicamid and its metabolites in some crops and soils remain unclear. Herein, an easy, sensitive and reliable method using a modified QuEChERS extraction coupled with LC-MS/MS for the simultaneous analysis of flonicamid and its metabolites in cabbage and soil was developed. Based on this method, the dissipation behaviors of flonicamid and its metabolites as well as their persistence in cabbage and soil during harvest were investigated. Flonicamid degraded rapidly, and the half-lives of flonicamid only and total residues (the sum of flonicamid and its metabolites) were 1.49-4.59 and 1.97-4.99 days in cabbage, and 2.12-7.97 and 2.04-7.62 days in soil, respectively. When 50% flonicamid WG was sprayed once or twice at the recommended dose and 1.5-fold the recommended dose, the highest residues of total flonicamid in cabbage and soil from different pre-harvest intervals (3, 7 and 14 days) were 0.070 and 0.054 mg kg-1, respectively. The risk quotient (RQ) of flonicamid based on the consumption data from China was below 16.84%, indicating that the use of flonicamid is non-hazardous to humans. These results could not only guide the safe and responsible use of flonicamid in agriculture but also help the Chinese government establish the maximum residue level (MRL) for flonicamid in cabbage.


Asunto(s)
Brassica/metabolismo , Insecticidas/metabolismo , Niacinamida/análogos & derivados , Residuos de Plaguicidas/metabolismo , Contaminantes del Suelo/metabolismo , Agricultura , Brassica/química , China , Cromatografía Liquida , Exposición Dietética , Ecosistema , Semivida , Humanos , Niacinamida/metabolismo , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Medición de Riesgo , Suelo/química , Contaminantes del Suelo/análisis , Espectrometría de Masas en Tándem/métodos
7.
Anal Biochem ; 530: 87-93, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28499497

RESUMEN

The chemiluminescence enzyme immunoassay (CLEIA) method responds differently to various sample matrices because of the matrix effect. In this work, the CLEIA method was coupled with molecularly imprinted polymers (MIPs) synthesized by precipitation polymerization to study the matrix effect. The sample recoveries ranged from 72.62% to 121.89%, with a relative standard deviation (RSD) of 3.74-18.14%.The ratio of the sample matrix-matched standard curve slope rate to the solvent standard curve slope was 1.21, 1.12, 1.17, and 0.85 for apple, rice, orange and cabbage in samples pretreated with the mixture of PSA and C18. However, the ratio of sample (apple, rice, orange, and cabbage) matrix-matched standard-MIPs curve slope rate to the solvent standard curve was 1.05, 0.92, 1.09, and 1.05 in samples pretreated with MIPs, respectively. The results demonstrated that the matrices of the samples greatly interfered with the detection of parathion residues by CLEIA. The MIPs bound specifically to the parathion in the samples and eliminated the matrix interference effect. Therefore, the CLEIA method have successfully applied MIPs in sample pretreatment to eliminate matrix interference effects and provided a new sensitive assay for agro-products.


Asunto(s)
Técnicas para Inmunoenzimas/métodos , Mediciones Luminiscentes/métodos , Impresión Molecular/métodos , Paratión/análisis , Paratión/aislamiento & purificación , Polímeros/química , Extracción en Fase Sólida/métodos , Brassica/química , Citrus sinensis/química , Malus/química , Oryza/química , Paratión/química
8.
Analyst ; 142(14): 2640-2647, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28612075

RESUMEN

Surface-enhanced Raman scattering (SERS) has been widely used in the detection of targets and strongly depends on the interaction and the distance between the targets and nanoparticles. Herein, metal-organic frameworks (MOFs) were first easily synthesized on a large scale via a water bath method, especially Uio-66 and Uio-67. MOFs embedded with gold nanoparticles (AuNPs) for SERS enhancement were successfully fabricated via an impregnation strategy. The synthesized AuNPs/MOF-199, AuNPs/Uio-66, and AuNPs/Uio-67 composites, with LSPR properties and high adsorption capability of MOFs to preconcentrate the analytes close to the surface of the AuNPs, exhibited excellent SERS activity. The effects of the reducing concentrations of sodium citrate on the SERS activity, and the stability and reproducibility of the AuNP/MOFs have been discussed via the detection of acetamiprid. The SERS intensity enhanced by the composites was retained for more than 40 days under ambient conditions with the reducing concentrations of sodium citrate at 0.16%, 0.20%, and 0.16%. The limits of detection with the signal/noise ratio higher than 3 at the characteristic peak 632 cm-1 were 0.02 µM, 0.009 µM, and 0.02 µM for acetamiprid. Most interestingly, the AuNP/MOF-199 composites, whose morphology was long tube sheet, exhibited excellent SERS activity. These novel composites with high sensitivity, stability, and reproducibility provide a new route for the detection of pesticides via the SERS technology.

9.
Anal Bioanal Chem ; 409(30): 7133-7144, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29018930

RESUMEN

An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL-1, with a detection limit of 0.27 ng mL-1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.


Asunto(s)
Cucumis sativus/química , Glicina/análogos & derivados , Oro/química , Polímeros/química , Pirroles/química , Contaminantes Químicos del Agua/química , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , Glicina/química , Herbicidas/química , Impresión Molecular/métodos , Glifosato
10.
J Sep Sci ; 40(24): 4747-4756, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28988436

RESUMEN

Magnetic zeolitic imidazolate framework 67/graphene oxide composites were synthesized by one-pot method at room temperature for the first time. Electrostatic interactions between positively charged metal ions and both negatively charged graphene oxide and Fe3 O4 nanoparticles were expected to chemically stabilize magnetic composites to generate homogeneous magnetic products. The additional amount of graphene oxide and stirring time of graphene oxide, Co2+ , and Fe3 O4 solution were investigated. The zeolitic imidazolate framework 67 and Fe3 O4 nanoparticles were uniformly attached on the surface of graphene oxide. The composites were applied to magnetic solid-phase extraction of five neonicotinoid insecticides in environmental water samples. The main experimental parameters such as amount of added magnetic composites, extraction pH, ionic strength, and desorption solvent were optimized to increase the capacity of adsorbing neonicotinoid insecticides. The results show limits of detection at signal-to-noise ratio of 3 were 0.06-1.0 ng/mL under optimal conditions. All analytes exhibited good linearity with correlation coefficients of higher than 0.9915. The relative standard deviations for five neonicotinoid insecticides in environmental samples ranged from 1.8 to 16.5%, and good recoveries from 83.5 to 117.0% were obtained, indicating that magnetic zeolitic imidazolate framework 67/graphene oxide composites were feasible for analysis of trace analytes in environmental water samples.

12.
J Hazard Mater ; 469: 134067, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38513441

RESUMEN

High-performance antibodies are core reagents for highly sensitive immunoassays. Herein, based on a novel hapten, a hybridoma secreting the high-affinity anti-ethirimol monoclonal antibody (mAb-14G5F6) was isolated with an IC50 value of 1.35 µg/L and cross-reactivity below 0.20% for 13 analogs. To further address the challenge of hybridoma preservation and antibody immortalization, a recombinant full-length antibody (rAb-14G5F6) was expressed using the HEK293(F) expression system based on the mAb-14G5F6 gene. The affinity, specificity, and tolerance of rAb-14G5F6, as characterized by indirect competitive enzyme-linked immunosorbent assay and noncompetitive surface plasmon resonance, exhibited high concordance with those of mAb-14G5F6. Further immunoassays based on rAb-14G5F6 were developed for irrigation water and strawberry fruit with limits of detection of 0.0066 and 0.036 mg/kg, respectively, recoveries of 80100%, and coefficients of variation below 10%. Furthermore, homology simulation and molecular docking revealed that GLU(L40), GLY(L107), GLY(H108), and ASP(H114) play important roles in forming hydrogen bonds and pi-anion ionic bonds between rAb-14G5F6 and ethirimol, resulting in the high specificity and affinity of rAb-14G5F6 for ethirimol, with a KD of 5.71 × 10-10 mol/L. Overall, a rAb specific for ethirimol was expressed successfully in this study, laying the groundwork for rAb-based immunoassays for monitoring fungicide residues in agricultural products and the environment.


Asunto(s)
Anticuerpos Monoclonales , Frutas , Pirimidinonas , Humanos , Ensayo de Inmunoadsorción Enzimática , Frutas/química , Agua/análisis , Simulación del Acoplamiento Molecular , Células HEK293 , Proteínas Recombinantes/genética
13.
J Agric Food Chem ; 72(4): 2059-2076, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38252458

RESUMEN

Fipronil, classified as a phenylpyrazole insecticide, is utilized to control agricultural, public health, and veterinary pests. Notably, its unique ecological fate involves degradation to toxic metabolites, which poses the risk of contamination in water and foodstuffs and potential human exposure through the food chain. In response to these concerns, there is a pressing need to develop analytical methodologies for detecting fipronil and its metabolites. This review provides a concise overview of the mode of action, metabolism, and toxicology of fipronil. Additionally, various detection strategies, encompassing antibody-based immunoassays and emerging analytical techniques, such as fluorescence assays based on aptamer/molecularly imprinted polymer/fluorescent probes, electrochemical sensors, and Raman spectroscopy, are thoroughly reviewed and discussed. The focus extends to detecting fipronil and its metabolites in crops, fruits, vegetables, animal-derived foods, water, and bodily fluids. This comprehensive exploration contributes valuable insights into the field, aiming to foster the development and innovation of more sensitive, rapid, and applicable analytical methods.


Asunto(s)
Insecticidas , Animales , Humanos , Insecticidas/metabolismo , Pirazoles/química , Inmunoensayo , Agua
14.
Foods ; 12(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569192

RESUMEN

Food safety is as important as ever, and the safeguards implemented to inspect and reduce pesticides, veterinary drugs, toxins, pathogens, illegal additives, and other deleterious contaminants in our food supply has helped improve human health and increase the length and quality of our lives [...].

15.
Biosensors (Basel) ; 13(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36832005

RESUMEN

In this study, a monoclonal antibody (mAb) specific to forchlorfenuron (CPPU) with high sensitivity and specificity was produced and designated (9G9). To detect CPPU in cucumber samples, an indirect enzyme-linked immunosorbent assay (ic-ELISA) and a colloidal gold nanobead immunochromatographic test strip (CGN-ICTS) were established using 9G9. The half-maximal inhibitory concentration (IC50) and the LOD for the developed ic-ELISA were determined to be 0.19 ng/mL and 0.04 ng/mL in the sample dilution buffer, respectively. The results indicate that the sensitivity of the antibodies prepared in this study (9G9 mAb) was higher than those reported in the previous literature. On the other hand, in order to achieve rapid and accurate detection of CPPU, CGN-ICTS is indispensable. The IC50 and the LOD for the CGN-ICTS were determined to be 27 ng/mL and 6.1 ng/mL. The average recoveries of the CGN-ICTS ranged from 68 to 82%. The CGN-ICTS and ic-ELISA quantitative results were all confirmed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with 84-92% recoveries, which indicated the methods developed herein are appropriate for detecting CPPU in cucumber. The CGN-ICTS method is capable of both qualitative and semiquantitative analysis of CPPU, which makes it a suitable alternative complex instrument method for on-site detection of CPPU in cucumber samples since it does not require specialized equipment.


Asunto(s)
Anticuerpos Monoclonales , Espectrometría de Masas en Tándem , Cromatografía Liquida , Ensayo de Inmunoadsorción Enzimática/métodos
16.
Food Chem ; 413: 135607, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773354

RESUMEN

Simple and rapid multiresidue trace detection of organophosphate pesticides (OPs) is extremely important for various reasons, including food safety, environmental monitoring, and national health. Here, a catalytic hairpin self-assembly (CHA)-based competitive fluorescent immunosensor was developed to detect OPs in agricultural products, involving enabled dual signal amplification followed by a CHA reaction. The developed method could detect 0.01-50 ng/mL triazophos, parathion, and chlorpyrifos, with limits of detection (LODs) of 0.012, 0.0057, and 0.0074 ng/mL, respectively. The spiked recoveries of samples measured using this assay ranged from 82.8 % to 110.6 %, with CV values ranging between 5.5 % and 18.5 %. This finding suggests that the CHA-based competitive fluorescent immunosensor is a reliable and accurate method for detecting OPs in agricultural products. The results correlated well with those obtained from the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, indicating that the CHA-based biosensor is able to accurately detect OPs and can be used as a reliable alternative to the LC-MS/MS method. Additionally, the CHA-based biosensor is simpler and faster than LC-MS/MS, which makes it a more practical and cost-effective option for the detection of OPs. In summary, the CHA-based competitive fluorescent immunosensor can be considered a promising approach for trace analysis and multiresidue determination of pesticides, which can open up new horizons in the fields of food safety, environmental monitoring, and national health.


Asunto(s)
Técnicas Biosensibles , Cloropirifos , Insecticidas , Plaguicidas , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem , Inmunoensayo , Plaguicidas/análisis , Insecticidas/análisis
17.
J Agric Food Chem ; 71(41): 14967-14978, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37803933

RESUMEN

The synthesis of a hapten and antigen for the preparation of a monoclonal antibody (mAb) for buprofezin is described. The recognition mechanism of hapten and buprofezin by monoclonal antibodies (mAb-19F2) is described. The effectiveness of the mAb-19F2 immunoassay technique was assessed, and the effective detection of buprofezin in tea samples was achieved through the establishment of indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) and colloidal gold immunochromatography assay (GICA). The mAb-19F2 subtype was IgG1, with an IC50 of 1.8 ng/mL and a linear range (IC20-IC80) of 0.6-5.4 µg/L, and had a cross-reaction rate of less than 0.18% with 29 other pesticides (neonicotinoids and insect growth regulators). The study identified π-π stacking interactions between hapten and TYR-61 at the mAb-19F2 site and alkyl/phosphate interactions with TRP-105 and ARG-103. The ic-ELISA had an IC50 of 12.9 ng/mL in green tea and 5.65 ng/mL in black tea, with a recovery rate of 92.4%-101.0% and RSD of 2.1%-4.8%. The GICA had a limit of detection (LOD) was 500 ng/mL, with the complete disappearance of the test lines visible to the naked eye. The limit of quantitation (LOQ, IC20) was determined to be 16.8 ng/mL. Additionally, the developed GICA showed no cross-reactivity with neonicotinoid pesticides. The recovery rate of tea spiked recovered samples was 83.6%-92.2%, with an RSD of 5.3%-12.6%, and the results were consistent with the LC/MS method. This study is important for the real-time detection of buprofezin residues to ensure food safety and human health.


Asunto(s)
Anticuerpos Monoclonales , Plaguicidas , Humanos , Anticuerpos Monoclonales/química , Inmunoensayo/métodos , Ensayo de Inmunoadsorción Enzimática/métodos , Haptenos , Neonicotinoides ,
18.
ACS Nano ; 16(2): 2762-2773, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35135193

RESUMEN

Developing an effective and safe technology to control severe bacterial diseases in agriculture has attracted significant attention. Here, ZnO nanosphere and ZIF-8 are employed as core and shell, respectively, and then a pH-responsive core-shell nanocarrier (ZnO-Z) was prepared by in situ crystal growth strategy. The bactericide berberine (Ber) was further loaded to form Ber-loaded ZnO-Z (Ber@ZnO-Z) for control of tomato bacterial wilt disease. Results demonstrated that Ber@ZnO-Z could release Ber rapidly in an acidic environment, which corresponded to the pH of the soil where the tomato bacterial wilt disease often outbreak. In vitro experiments showed that the antibacterial activity of Ber@ZnO-Z was about 4.5 times and 1.8 times higher than that of Ber and ZnO-Z, respectively. It was because Ber@ZnO-Z could induce ROS generation, resulting in DNA damage, cytoplasm leakage, and membrane permeability changes so the released Ber without penetrability more easily penetrated the bacteria to achieve an efficient synergistic bactericidal effect with ZnO-Z carriers after combining with DNA. Pot experiments also showed that Ber@ZnO-Z significantly reduced disease severity with a wilt index of 45.8% on day 14 after inoculation, compared to 94.4% for the commercial berberine aqueous solution. More importantly, ZnO-Z carriers did not accumulate in aboveground parts of plants and did not affect plant growth in a short period. This work provides guidance for the effective control of soil-borne bacterial diseases and the development of sustainable agriculture.


Asunto(s)
Berberina , Nanosferas , Ralstonia solanacearum , Óxido de Zinc , Bacterias , Berberina/farmacología , Concentración de Iones de Hidrógeno , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Óxido de Zinc/farmacología
19.
Front Nutr ; 9: 1036025, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337636

RESUMEN

Tristyrylphenol ethoxylates (TSPEOn) are widely used as inert ingredients in pesticide formulations in the world. However, the information on the dissipation behavior of different homologs TSPEOn in agro-products is lacking. To investigate the dissipation behavior of TSPEOn, a cowpea field experiment treated with TSPEOn at different doses was carried out in Guangdong province, China. Different 24 TSPEO homologs were all detected in cowpea from the field terminal residue experiments, and the total concentrations of TSPEO homologs in cowpea were 40.0-1,374 µg/kg. The dissipation half-lives of 24 TSPEO homologs in soil were 1.51-2.35 times longer than those in cowpea. The long-chain homologs TSPEOn were dissipated faster than the short-chain homologs TSPEOn, suggesting a homolog-specific degradation of the TSPEOn in the cowpea ecosystem. The characteristic bimodal profiles of TSPEOn (n = 6-29) differing from that of the commercial TSPEOn were observed in the cowpea terminal residues experiment, indicating that the long-chain TSPEOn would degrade to short-chain TSPEOn in cowpea and soil. The acute and chronic dietary exposure risks of ΣTSPEOn in cowpea are within acceptable margins for human consumption across different ages and genders. But the health risks to children should be noticed in future.

20.
Front Nutr ; 9: 1061195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532553

RESUMEN

A new method is described based on ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC) with electrospray mass spectrometry detection for comprehensive quantitative analysis of 66 polyethoxylated tallow amine (POE-tallowamine) homologs in citrus. Efficient separation, reduced band broadening, and high sensitivity were achieved by employing an acetonitrile-aqueous solution containing a 10 mM ammonium formate gradient on a hydrophilic interaction chromatography (HILIC) column with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) method. The quantitative accuracy and precision of the method were improved by the use of matrix-matched calibration standards. At spiked levels of (50 + 250) µg/kg, (200 + 1000) µg/kg, and (500 + 2500) µg/kg POE-5 and POE-15 (1:5), the average recoveries of the POE-tallowamine homologs ranged from 71.9 to 112%, with RSDs < 16.6%. The limits of detection (LODs) and limits of quantification (LOQs) for POE-tallowamine homologs were 0.01-2.57 and 0.03-8.58 µg/kg, respectively. The method was successfully applied to determine POE-tallowamine in citrus samples from typical Chinese regions in 2021. POE-tallowamine was detected in all 54 samples, and the highest concentration (143 µg/kg) of POE-tallowamine was found in Jelly orange from Zhejiang Province, which might indicate a higher usage and demand of glyphosate herbicides in Zhejiang.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA