RESUMEN
BACKGROUND: Titanium dioxide nanoparticles (TiO2NPs) are widely used in medical application. However, the relevant health risk has not been completely assessed, the potential of inducing arterial thrombosis (AT) in particular. METHODS: Alterations in platelet function and susceptibility to arterial thrombosis induced by TiO2NPs were examined using peripheral blood samples from healthy adult males and an in vivo mouse model, respectively. RESULTS: Here, using human platelets (hPLTs) freshly isolated from health volunteers, we demonstrated TiO2NP treatment triggered the procoagulant activity of hPLTs through phosphatidylserine exposure and microvesicles generation. In addition, TiO2NP treatment increased the levels of glycoprotein IIb/IIIa and P-selectin leading to aggregation and activation of hPLTs, which were exacerbated by providing physiology-mimicking conditions, including introduction of thrombin, collagen, and high shear stress. Interestingly, intracellular calcium levels in hPLTs were increased upon TiO2NP treatment, which were crucial in TiO2NP-induced hPLT procoagulant activity, activation and aggregation. Moreover, using mice in vivo models, we further confirmed that TiO2NP treatment a reduction in mouse platelet (mPLT) counts, disrupted blood flow, and exacerbated carotid arterial thrombosis with enhanced deposition of mPLT. CONCLUSIONS: Together, our study provides evidence for an ignored health risk caused by TiO2NPs, specifically TiO2NP treatment augments procoagulant activity, activation and aggregation of PLTs via calcium-dependent mechanism and thus increases the risk of AT.
Asunto(s)
Plaquetas , Activación Plaquetaria , Agregación Plaquetaria , Trombosis , Titanio , Titanio/toxicidad , Animales , Humanos , Agregación Plaquetaria/efectos de los fármacos , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Masculino , Trombosis/inducido químicamente , Ratones , Activación Plaquetaria/efectos de los fármacos , Adulto , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Ratones Endogámicos C57BL , Selectina-P/metabolismo , Calcio/metabolismo , Calcio/sangre , Nanopartículas/toxicidad , Nanopartículas del Metal/toxicidadRESUMEN
Lead (Pb) is a common metal, which can be toxic to the human body via the pollution of water or food, and can cause anemia and other diseases. However, what happens before hemolysis and anemia caused by Pb poisoning is unclear. Here, we demonstrated Pb can cause procoagulant activity of erythroid cells leading to thrombosis before hemolysis. In freshly isolated human erythroid cells, we observed that Pb resulted in hemolysis in both concentration- and time-dependent manners, but that no lysis occurred in Pb-exposed erythroid cells (≤20 µM for 1 h). Pb treatment did not cause shape changes at up to 0.5 h incubation but at 1 h incubation echinocyte and echino-spherocyte shape changes were observed, indicating that Pb can exaggerate a concentration- and time-dependent trend of shape changes in erythroid cells. After Pb treatment, ROS-independent eryptosis was shown with no increase of reactive oxygen species (ROS), but with an increase of [Ca2+]i and caspase 3 activity. With a thrombosis mouse model, we observed increased thrombus by Pb treatment (0 or 25 mg/kg). In brief, prior to hemolysis, we demonstrated Pb can cause ROS-independent but [Ca2+]i-dependent eryptosis, which might provoke thrombosis.
Asunto(s)
Anemia , Eriptosis , Trombosis , Animales , Calcio , Eritrocitos , Hemólisis , Plomo/toxicidad , Ratones , Fosfatidilserinas , Especies Reactivas de Oxígeno , Trombosis/etiologíaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: The process of atherosclerosis (AS) is complicated. Transcriptomics technology can assist in discovering the underlying mechanisms and exploring the key targets of Traditional Chinese Medicine (TCM) against atherosclerosis. AIM: This study aimed to investigate targets and signaling pathways significantly related to AS and the potential intervention targets of Xuefu Zhuyu decoction by transcriptomics. MATERIALS AND METHODS: AS models were established by subjecting ApoE-/-mice to an 8-week high-fat diet. Structural changes and plaque formation in the aortic root were observed using hematoxylin-eosin staining (HE staining), while Oil Red O staining was employed to visualize lipid deposition within the aortic root plaque. Movat staining and immunohistochemical staining were conducted to examine the components present in the aortic root plaque. Macrophage content within the plaque was observed through immunofluorescence. Additionally, mRNA sequencing was performed on aortic tissues to identify differentially expressed genes. Enrichment analysis was performed using GO and KEGG analysis. Visualization of the protein-protein interaction (PPI) network was achieved using Cytoscape 3.7.1 and STRING. Western blotting (WB) was employed to assess the protein expression of major differentially expressed genes in the aortic tissue. The drug freeze-dried powder of Xuefu Zhuyu decoction was prepared and the RAW264.7 cells were induced by lipopolysaccharide (LPS) to build an in vitro model. Real-time quantitative PCR was employed to measure the mRNA expression of major differential genes. RESULTS: After ApoE-/- mice were fed with an 8-week high-fat diet, observable changes included the thinning of the aortic root wall, the accumulation of foam cells within the plaque, and the formation of cholesterol crystals in the model group. Treatment with Xuefu Zhuyu (XFZY) decoction for 12 weeks significantly reduced the lipid deposition and the number of macrophages (P < 0.05) and significantly increased the collagen content within the plaque (P < 0.01). Enrichment analysis revealed a high enrichment of the Cytokine-cytokine receptor interaction pathway and Chemokine signaling pathway. Noteworthy genes involved in this response included Ccl12, Ccl22, Cx3cr1, Ccr7, Ccr2, Tnfrsf25, and Gdf5. Xuefu Zhuyu decoction significantly downregulated the expression of CX3CL1 and CX3CR1 (P < 0.05) and upregulated the expression of GDF5 (P < 0.01). Compared with control group, in cell models, the mRNA expressions of Ccl12, Ccl22, and Ccr2 were significantly upregulated (P < 0.05 or P < 0.01). Xuefu Zhuyu decoction significantly downregulated the expression of Ccl12, Ccl22, Cx3cr1, Ccr7 and Ccr2 (P < 0.05 or P < 0.01). CONCLUSION: Xuefu Zhuyu decoction demonstrates effective regulation of plaque components, retarding plaque progression and preserving plaque stability by modulating lipid metabolism and inflammatory responses. Subsequent transcriptome analysis identified the Cytokine-cytokine receptor interaction and Chemokine signaling pathway as potential key pathways for the therapeutic effects of Xuefu Zhuyu decoction. This insight not only provides crucial avenues for further exploration into the mechanisms underlying Xuefu Zhuyu decoction but also offers valuable perspectives and hypotheses for enhancing disease prevention and treatment strategies.
Asunto(s)
Aterosclerosis , Dieta Alta en Grasa , Medicamentos Herbarios Chinos , Transducción de Señal , Animales , Medicamentos Herbarios Chinos/farmacología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Masculino , Dieta Alta en Grasa/efectos adversos , Quimiocinas/metabolismo , Quimiocinas/genética , Perfilación de la Expresión Génica/métodos , Ratones Noqueados para ApoE , Ratones Endogámicos C57BL , Placa Aterosclerótica/tratamiento farmacológico , Modelos Animales de Enfermedad , Transcriptoma/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Apolipoproteínas E/genética , Aorta/efectos de los fármacos , Aorta/patologíaRESUMEN
AIMS: Despite successful vascular recanalization in stroke, one-fourth of patients have an unfavorable outcome due to no-reflow. The pathogenesis of no-reflow is fully unclear, and therapeutic strategies are lacking. Upon traditional Chinese medicine, Tongxinluo capsule (TXL) is a potential therapeutic agent for no-reflow. Thus, this study is aimed to investigate the pathogenesis of no-reflow in stroke, and whether TXL could alleviate no-reflow as well as its potential mechanisms of action. METHODS: Mice were orally administered with TXL (3.0 g/kg/d) after transient middle cerebral artery occlusion. We examined the following parameters: neurological function, no-reflow, leukocyte-endothelial cell interactions, HE staining, leukocyte subtypes, adhesion molecules, and chemokines. RESULTS: Our results showed stroke caused neurological deficits, neuron death, and no-reflow. Adherent and aggregated leukocytes obstructed microvessels as well as leukocyte infiltration in ischemic brain. Leukocyte subtypes changed after stroke mainly including neutrophils, lymphocytes, regulatory T cells, suppressor T cells, helper T type 1 (Th1) cells, Th2 cells, B cells, macrophages, natural killer cells, and dendritic cells. Stroke resulted in upregulated expression of adhesion molecules (P-selectin, E-selectin, and ICAM-1) and chemokines (CC-chemokine ligand (CCL)-2, CCL-3, CCL-4, CCL-5, and chemokine C-X-C ligand 1 (CXCL-1)). Notably, TXL improved neurological deficits, protected neurons, alleviated no-reflow and leukocyte-endothelial cell interactions, regulated multiple leukocyte subtypes, and inhibited the expression of various inflammatory mediators. CONCLUSION: Leukocyte-endothelial cell interactions mediated by multiple inflammatory factors are an important cause of no-reflow in stroke. Accordingly, TXL could alleviate no-reflow via suppressing the interactions through modulating various leukocyte subtypes and inhibiting the expression of multiple inflammatory mediators.
Asunto(s)
Medicamentos Herbarios Chinos , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Medicina Tradicional China , Ligandos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Comunicación Celular , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/metabolismo , Leucocitos/metabolismo , Mediadores de Inflamación/metabolismoRESUMEN
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S-S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy.
Asunto(s)
Glicoproteínas de Membrana , Oxidorreductasas , Proteína Disulfuro Isomerasas , Transporte de Electrón , Glutatión/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxidación-Reducción , Agregación Plaquetaria , Proteína Disulfuro Isomerasas/metabolismoRESUMEN
The Chinese traditional medicine KangXianYiAi formula (KXYA) is used to treat hepatic disease in the clinic. Here we aim to confirm the therapeutic effects and explore the pharmacological mechanisms of KXYA on hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC). We first collected and analyzed clinical data of 40 chronic hepatitis B (CHB) patients with precancerous liver lesions under KXYA treatment. Then, the cell viability, migration, cell cycle, and apoptosis of HepAD38 cells with KXYA treatment were examined. Next, we performed network pharmacological analysis based on database mining to obtain the key target pathways and genes of KXYA treatment on HBV-related HCC. We finally analyzed the expression of the key genes between normal and HBV-related HCC tissues in databases and measured the mRNA expression of the key genes in HepAD38 cells after KXYA treatment. The KXYA treatment could reduce the liver nodule size of CHB patients, suppress the proliferation and migration capabilities, and promote apoptosis of HepAD38 cells. The key pathways of KXYA on HBV-related HCC were Cancer, Hepatitis B, Viral carcinogenesis, Focal adhesion, and PI3K-Akt signaling, and KXYA treatment could regulate the expression of the key genes including HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1. The KXYA exhibited a curative effect via inhibiting proliferation, migration, and promoting apoptosis of HBV-related HCC and the pharmacological mechanism was related to the regulation of the expression of HNF4A, MAPK8, NR3C1, PTEN, EGFR, and HDAC1.
RESUMEN
Simiao Yong'an decoction (SMYAD), a classic traditional Chinese medicine formula, has been used to treat atherosclerosis (AS) in clinical in China, but its therapeutic mechanism and pharmacodynamic material basis are not clear. In this study, the AS model was caused by a high-fat diet and perivascular carotid collar placement (PCCP), and SMYAD was orally administered to the model and normal mice. A rapid, sensitive, selective, and reliable method using ultrahigh-performance liquid chromatography (UHPLC) system combined with a Q Exactive HF-X mass spectrometer (UHPLC-Q Exactive HF-X MS) was established and validated for the simultaneous determination of seven compounds, including harpagide, chlorogenic acid, swertiamarin, sweroside, angoroside C, liquiritin, and isoliquiritigenin in the plasma of normal and AS mice. The specificity, linearity, precision, accuracy, recovery, and stability of the method were all within the acceptable criteria. The results showed that some pharmacokinetic behaviors of harpagide, chlorogenic acid, and isoliquiritigenin were significantly different among the two groups of mice. The specific parameter changes were harpagide (AUC0-t and AUC0-∞ were 11075.09 ± 2132.38 and 16221.95 ± 5622.42 ng·mL-1·h, respectively; CLz/F was 2.45 ± 0.87 L/h/mg), chlorogenic acid (t 1/2 was 21.59 ± 9.16 h; AUC0-∞ was 2637.51 ± 322.54 ng·mL-1·h; CLz/F was 13.49 ± 1.81 L/h/mg) and isoliquiritigenin (AUC0-t and AUC0-∞ were 502.25 ± 165.65 and 653.68 ± 251.34 ng·mL-1·h, respectively; CLz/F was 62.16 ± 23.35 L/h/mg) were altered under the pathological status of AS. These differences might be partly ascribed to the changes in gastrointestinal microbiota, nonspecific drug transporters, and cytochrome P450 activity under the AS state, providing research ideas and experimental basis for pharmacological effects and pharmacodynamic material basis.
RESUMEN
Yiqi Huoxue (YQHX) is widely used in traditional Chinese medical practice due to its reported cardioprotective effects. The aim of the present study was to investigate the mechanism underlying these effects of YQHX via the regulation of the Sigma-1 receptor. The Sigma-1 receptor is a chaperone protein located on the mitochondrion-associated endoplasmic reticulum (ER) membrane. It serves an important role in heart function by regulating intracellular Ca2+ homeostasis and enhancing cellular bioenergetics. In the present study, male Sprague Dawley rats with myocardial infarction (MI)-induced heart failure were used. MI rats were administered different treatments, including normal saline, YQHX and fluvoxamine, an agonist of the Sigma-1 receptor. Following four weeks of treatment, YQHX was revealed to improve heart function and attenuate myocardial hypertrophy in MI rats. Additionally, YQHX increased the ATP content and improved the mitochondrial ultrastructure in the heart tissues of MI rats in comparison with acontrol. Treatment was revealed to attenuate the decreased expression of the Sigma-1 receptor and increase the expression of inositol triphosphate type 2 receptors (IP3R2) in MI rats. By exposing H9c2 cells to angiotensin II (Ang II), YQHX prevented cell hypertrophy and normalized the decreased ATP content. However, these positive effects were partially inhibited when the Sigma-1 receptor was knocked down via small interfering RNA transfection. The results of the present study suggested that the Sigma-1 receptor serves an important role in the cardioprotective efficacy of YQHX by increasing ATP content and attenuating cardiomyocyte hypertrophy.
RESUMEN
A derivative formula, DGBX, which is composed of three herbs (Radix astragali, Radix Angelicae sinensis, and Coptis chinensis Franch), is derived from a famous Chinese herbal formula, Danggui Buxue Tang (DBT) (Radix astragali and Radix Angelicae sinensis). We aimed to investigate the effects of DGBX on the regulation of the balance between proliferation and apoptosis of hematopoietic stem cells (HSCs) due to the aberrant immune response in a mouse model of aplastic anemia (AA). Cyclosporine (CsA), an immunosuppressor, was used as the positive control. Our results indicated that DGBX could downregulate the production of IFNγ in bone marrow cells by interfering with the binding between SLAM and SAP and the expressions of Fyn and T-bet. This herbal formula can also inhibit the activation of Fas-mediated apoptosis, interferon regulatory factor-1-induced JAK/Stat, and eukaryotic initiation factor 2 signaling pathways and thereby induce proliferation and attenuate apoptosis of HSCs. In conclusion, DGBX can relieve the immune-mediated destruction of HSCs, repair hematopoietic failure, and recover the hematopoietic function of HSCs in hematogenesis. Therefore, DGBX can be used in traditional medicine against AA as a complementary and alternative immunosuppressive therapeutic formula.
Asunto(s)
Anemia Aplásica/terapia , Mezclas Complejas/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Células Madre Hematopoyéticas/patología , Anemia Aplásica/inmunología , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Cromatografía Líquida de Alta Presión , Mezclas Complejas/análisis , Modelos Animales de Enfermedad , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos DBARESUMEN
Objective. To explore the mechanism of cardioprotective effects of Chinese medicine, Yiqi Huoxue recipe, in rats with myocardial infarction- (MI-) induced heart failure. Methods. Male Sprague-Dawley rats underwent left anterior descending artery (LAD) ligation or sham operation. The surviving MI rats were divided randomly into three groups: MI (5 mL/kg/d NS by gavage), MI + Metoprolol Tartrate (MT) (12 mg/kg/d MT by gavage), and MI + Yiqi Huoxue (5 mL/kg recipe by gavage). And the sham operation rats were given 5 mL/kg/d normal saline. Treatments were given on the day following surgery for 4 weeks. Then rats were detected for heart structure and function by transthoracic echocardiography. Apoptosis in heart tissues was detected by TUNEL staining. To determine whether the endoplasmic reticulum (ER) stress response pathway is included in the cardioprotective function of the recipe, ER stress related proteins such as GRP78 and caspase-12 were examined. Results. Yiqi Huoxue recipe attenuated heart function injury, reversed histopathological damage, alleviated myocardial apoptosis and inhibited ER stress in MI rats. Conclusion. All the results suggest that Yiqi Huoxue recipe improves the injured heart function maybe through inhibition of ER stress response pathway, which is a promising target in therapy for heart failure.