Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Microb Cell Fact ; 20(1): 11, 2021 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-33422055

RESUMEN

BACKGROUND: D-Amino acids are increasingly used as building blocks to produce pharmaceuticals and fine chemicals. However, establishing a universal biocatalyst for the general synthesis of D-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we developed an efficient in vivo biocatalysis system for the synthesis of D-amino acids from L-amino acids by the co-expression of membrane-associated L-amino acid deaminase obtained from Proteus mirabilis (LAAD), meso-diaminopimelate dehydrogenases obtained from Symbiobacterium thermophilum (DAPDH), and formate dehydrogenase obtained from Burkholderia stabilis (FDH), in recombinant Escherichia coli. RESULTS: To generate the in vivo cascade system, three strategies were evaluated to regulate enzyme expression levels, including single-plasmid co-expression, double-plasmid co-expression, and double-plasmid MBP-fused co-expression. The double-plasmid MBP-fused co-expression strain Escherichia coli pET-21b-MBP-laad/pET-28a-dapdh-fdh, exhibiting high catalytic efficiency, was selected. Under optimal conditions, 75 mg/mL of E. coli pET-21b-MBP-laad/pET-28a-dapdh-fdh whole-cell biocatalyst asymmetrically catalyzed the stereoinversion of 150 mM L-Phe to D-Phe, with quantitative yields of over 99% ee in 24 h, by the addition of 15 mM NADP+ and 300 mM ammonium formate. In addition, the whole-cell biocatalyst was used to successfully stereoinvert a variety of aromatic and aliphatic L-amino acids to their corresponding D-amino acids. CONCLUSIONS: The newly constructed in vivo cascade biocatalysis system was effective for the highly selective synthesis of D-amino acids via stereoinversion.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Aminoácidos/metabolismo , Aminohidrolasas/metabolismo , Formiato Deshidrogenasas/metabolismo , Biocatálisis , Burkholderia/enzimología , Clostridiales/enzimología , Proteus mirabilis/enzimología , Estereoisomerismo , Especificidad por Sustrato
2.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731373

RESUMEN

Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.


Asunto(s)
Dioxigenasas/química , Hierro/química , Isoleucina/análogos & derivados , Ácidos Cetoglutáricos/química , Aminoácido Oxidorreductasas/química , Catalasa/química , Sistema Libre de Células/química , Peróxido de Hidrógeno/química , Isoleucina/síntesis química , Isoleucina/química
3.
Comput Struct Biotechnol J ; 19: 577-585, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33510863

RESUMEN

Enzyme thermostabilization is considered a critical and often obligatory step in biosynthesis, because thermostability is a significant property of enzymes that can be used to evaluate their feasibility for industrial applications. However, conventional strategies for thermostabilizing enzymes generally introduce non-covalent interactions and/or natural covalent bonds caused by natural amino acid substitutions, and the trade-off between the activity and stability of enzymes remains a challenge. Here, we developed a computationally guided strategy for constructing thioether staples by incorporating noncanonical amino acid (ncAA) into the more flexible N/C-terminal domains of the multi-modular pullulanase from Bacillus thermoleovorans (BtPul) to enhance its thermostability. First, potential thioether staples located in the N/C-terminal domains of BtPul were predicted using RosettaMatch. Next, eight variants involving stable thioether staples were precisely predicted using FoldX and Rosetta ddg_monomer. Six positive variants were obtained, of which T73(O2beY)-171C had a 157% longer half-life at 70 °C and an increase of 7.0 °C in T m, when compared with the wild-type (WT). T73(O2beY)-171C/T126F/A72R exhibited an even more improved thermostability, with a 211% increase in half-life at 70 °C and a 44% enhancement in enzyme activity compared with the WT, which was attributed to further optimization of the local interaction network. This work introduces and validates an efficient strategy for enhancing the thermostability and activity of multi-modular enzymes.

4.
3 Biotech ; 10(4): 167, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32206501

RESUMEN

l-isoleucine dioxygenase (IDO) is an Fe (II)/α-ketoglutarate (α-KG)-dependent dioxygenase that specifically converts l-isoleucine (l-Ile) to (2S, 3R, 4S)-4-hydroxyisoleucine (4-HIL). 4-HIL is an important drug for the treatment and prevention of type 1 and type 2 diabetes but the yields using current methods are low. In this study, the CRISPR-Cas9 gene editing system was used to knockout sucAB and aceAK gene in the TCA cycle pathway of Escherichia coli (E. coli). For single-gene knockout, the whole process took approximately 7 days. However, the manipulation time was reduced by 2 days for each round of gene modification for multigene editing. Using the genome-edited recombinant strain E. coli BL21(DE3) ΔsucABΔaceAK/pET-28a(+)-ido (2Δ-ido), the bioconversion ratio of L-Ile to 4-HIL was enhanced by about 15% compared to E. coli BL21(DE3)/pET-28a(+)-ido [BL21(DE3)-ido] strain. The CRISPR-Cas9 editing strategy has the potential in modifying multiple genes more rapidly and in optimizing strains for industrial production.

5.
FEBS Lett ; 594(5): 799-812, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31665817

RESUMEN

Pullulanases are well-known debranching enzymes hydrolyzing α-1,6-glycosidic linkages. To date, engineering of pullulanase is mainly focused on catalytic pocket or domain tailoring based on structure/sequence information. Saturation mutagenesis-involved directed evolution is, however, limited by the low number of mutational sites compatible with combinatorial libraries of feasible size. Using Bacillus naganoensis pullulanase as a target protein, here we introduce the 'evolutionary coupling saturation mutagenesis' (ECSM) approach: residue pair covariances are calculated to identify residues for saturation mutagenesis, focusing directed evolution on residue pairs playing important roles in natural evolution. Evolutionary coupling (EC) analysis identified seven residue pairs as evolutionary mutational hotspots. Subsequent saturation mutagenesis yielded variants with enhanced catalytic activity. The functional pairs apparently represent distant sites affecting enzyme activity.


Asunto(s)
Bacillus/enzimología , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Bacillus/genética , Proteínas Bacterianas/genética , Emparejamiento Base , Catálisis , Evolución Molecular , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas/métodos
6.
RSC Adv ; 9(51): 29927-29935, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-35531513

RESUMEN

d-Amino acids are key intermediates required for the synthesis of important pharmaceuticals. However, establishing a universal enzymatic method for the general synthesis of d-amino acids from cheap and readily available precursors with few by-products is challenging. In this study, we constructed and optimized a cascade enzymatic route involving l-amino acid deaminase and d-amino acid dehydrogenase for the biocatalytic stereoinversions of l-amino acids into d-amino acids. Using l-phenylalanine (l-Phe) as a model substrate, this artificial biocatalytic cascade stereoinversion route first deaminates l-Phe to phenylpyruvic acid (PPA) through catalysis involving recombinant Escherichia coli cells that express l-amino acid deaminase from Proteus mirabilis (PmLAAD), followed by stereoselective reductive amination with recombinant meso-diaminopimelate dehydrogenase from Symbiobacterium thermophilum (StDAPDH) to produce d-phenylalanine (d-Phe). By incorporating a formate dehydrogenase-based NADPH-recycling system, d-Phe was obtained in quantitative yield with an enantiomeric excess greater than 99%. In addition, the cascade reaction system was also used to stereoinvert a variety of aromatic and aliphatic l-amino acids to the corresponding d-amino acids by combining the PmLAAD whole-cell biocatalyst with the StDAPDH variant. Hence, this method represents a concise and efficient route for the asymmetric synthesis of d-amino acids from the corresponding l-amino acids.

7.
ACS Omega ; 4(5): 8350-8358, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31459923

RESUMEN

Hydroxyl amino acids have tremendous potential applications in food and pharmaceutical industries. However, available dioxygenases are limited for selective and efficient hydroxylation of free amino acids. Here, we identified a 2-oxoglutarate-dependent dioxygenase from Kutzneria albida by gene mining and characterized the encoded protein (KaPH1). KaPH1 was estimated to have a molecular weight of 29 kDa. The optimal pH and temperature for its l-proline hydroxylation activity were 6.5 and 30 °C, respectively. The K m and k cat values of KaPH1 were 1.07 mM and 0.54 s-1, respectively, for this reaction by which 120 mM l-proline was converted to trans-4-hydroxy-l-proline with 92.8% yield (3.93 g·L-1·h-1). EDTA, [1,10-phenanthroline], Cu2+, Zn2+, Co2+, and Ni2+ inhibited this reaction. KaPH1 was also active toward l-isoleucine for 4-hydroxyisoleucine synthesis. Additionally, the unique biophysical features of KaPH1 were predicted by molecular modeling whereby this study also contributes to our understanding of the catalytic mechanisms of 2-oxoglutarate-dependent dioxygenases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA