Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 375-404, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27145840

RESUMEN

Inactivation of the transcription factor p53, through either direct mutation or aberrations in one of its many regulatory pathways, is a hallmark of virtually every tumor. In recent years, screening for p53 activators and a better understanding of the molecular mechanisms of oncogenic perturbations of p53 function have opened up a host of novel avenues for therapeutic intervention in cancer: from the structure-guided design of chemical chaperones to restore the function of conformationally unstable p53 cancer mutants, to the development of potent antagonists of the negative regulators MDM2 and MDMX and other modulators of the p53 pathway for the treatment of cancers with wild-type p53. Some of these compounds have now moved from proof-of-concept studies into clinical trials, with prospects for further, personalized anticancer medicines. We trace the structural evolution of the p53 pathway, from germ-line surveillance in simple multicellular organisms to its pluripotential role in humans.


Asunto(s)
Antineoplásicos Alquilantes/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteína p53 Supresora de Tumor/agonistas , Animales , Antineoplásicos Alquilantes/síntesis química , Proteínas de Ciclo Celular , Ensayos Clínicos como Asunto , Diseño de Fármacos , Humanos , Simulación del Acoplamiento Molecular , Mutación , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerización de Proteína , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Bioconjug Chem ; 34(9): 1679-1687, 2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37657082

RESUMEN

Protein arylation has attracted much attention for developing new classes of bioconjugates with improved properties. Here, we have evaluated 2-sulfonylpyrimidines as covalent warheads for the mild, chemoselective, and metal free cysteine S-arylation. 2-Sulfonylpyrimidines react rapidly with cysteine, resulting in stable S-heteroarylated adducts at neutral pH. Fine tuning the heterocyclic core and exocyclic leaving group allowed predictable SNAr reactivity in vitro, covering >9 orders of magnitude. Finally, we achieved fast chemo- and regiospecific arylation of a mutant p53 protein and confirmed arylation sites by protein X-ray crystallography. Hence, we report the first example of a protein site specifically S-arylated with iodo-aromatic motifs. Overall, this study provides the most comprehensive structure-reactivity relationship to date on heteroaryl sulfones and highlights 2-sulfonylpyrimidine as a synthetically tractable and protein compatible covalent motif for targeting reactive cysteines, expanding the arsenal of tunable warheads for modern covalent ligand discovery.


Asunto(s)
Cisteína , Sulfonas , Proteínas Mutantes , Cristalografía por Rayos X
3.
Crit Rev Toxicol ; 53(10): 658-701, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38050998

RESUMEN

Tobacco use is a major cause of preventable morbidity and mortality globally. Tobacco products, including smokeless tobacco (ST), generally contain tobacco-specific N-nitrosamines (TSNAs), such as N'-nitrosonornicotine (NNN) and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone (NNK), which are potent carcinogens that cause mutations in critical genes in human DNA. This review covers the series of biochemical and chemical transformations, related to TSNAs, leading from tobacco cultivation to cancer initiation. A key aim of this review is to provide a greater understanding of TSNAs: their precursors, the microbial and chemical mechanisms that contribute to their formation in ST, their mutagenicity leading to cancer due to ST use, and potential means of lowering TSNA levels in tobacco products. TSNAs are not present in harvested tobacco but can form due to nitrosating agents reacting with tobacco alkaloids present in tobacco during certain types of curing. TSNAs can also form during or following ST production when certain microorganisms perform nitrate metabolism, with dissimilatory nitrate reductases converting nitrate to nitrite that is then released into tobacco and reacts chemically with tobacco alkaloids. When ST usage occurs, TSNAs are absorbed and metabolized to reactive compounds that form DNA adducts leading to mutations in critical target genes, including the RAS oncogenes and the p53 tumor suppressor gene. DNA repair mechanisms remove most adducts induced by carcinogens, thus preventing many but not all mutations. Lastly, because TSNAs and other agents cause cancer, previously documented strategies for lowering their levels in ST products are discussed, including using tobacco with lower nornicotine levels, pasteurization and other means of eliminating microorganisms, omitting fermentation and fire-curing, refrigerating ST products, and including nitrite scavenging chemicals as ST ingredients.


Asunto(s)
Neoplasias , Nitrosaminas , Tabaco sin Humo , Humanos , Carcinógenos/toxicidad , Mutágenos , Neoplasias/inducido químicamente , Nitratos , Nitritos , Nitrosaminas/toxicidad , Nitrosaminas/química , Nitrosaminas/metabolismo , Tabaco sin Humo/toxicidad
4.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810274

RESUMEN

The carbazole compounds PK9320 (1-(9-ethyl-7-(furan-2-yl)-9H-carbazol-3-yl)-N-methylmethanamine) and PK9323 (1-(9-ethyl-7-(thiazol-4-yl)-9H-carbazol-3-yl)-N-methylmethanamine), second-generation analogues of PK083 (1-(9-ethyl-9H-carbazol-3-yl)-N-methylmethanamine), restore p53 signaling in Y220C p53-mutated cancer cells by binding to a mutation-induced surface crevice and acting as molecular chaperones. In the present paper, these three molecules have been tested for mutant p53-independent genotoxic and epigenomic effects on wild-type p53 MCF-7 breast adenocarcinoma cells, employing a combination of Western blot for phospho-γH2AX histone, Comet assay and methylation-sensitive arbitrarily primed PCR to analyze their intrinsic DNA damage-inducing and DNA methylation-changing abilities. We demonstrate that small modifications in the substitution patterns of carbazoles can have profound effects on their intrinsic genotoxic and epigenetic properties, with PK9320 and PK9323 being eligible candidates as "anticancer compounds" and "anticancer epi-compounds" and PK083 a "damage-corrective" compound on human breast adenocarcinoma cells. Such different properties may be exploited for their use as anticancer agents and chemical probes.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Carbazoles/farmacología , Mutágenos/farmacología , Antineoplásicos/química , Neoplasias de la Mama/genética , Carbazoles/química , Daño del ADN , Metilación de ADN , Epigénesis Genética/efectos de los fármacos , Femenino , Histonas/metabolismo , Humanos , Células MCF-7 , Mutágenos/química , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo
5.
Int J Cancer ; 147(10): 2847-2861, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32599645

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is resistant to virtually all chemo- and targeted therapeutic approaches. Epigenetic regulators represent a novel class of drug targets. Among them, BET and HDAC proteins are central regulators of chromatin structure and transcription, and preclinical evidence suggests effectiveness of combined BET and HDAC inhibition in PDAC. Here, we describe that TW9, a newly generated adduct of the BET inhibitor (+)-JQ1 and class I HDAC inhibitor CI994, is a potent dual inhibitor simultaneously targeting BET and HDAC proteins. TW9 has a similar affinity to BRD4 bromodomains as (+)-JQ1 and shares a conserved binding mode, but is significantly more active in inhibiting HDAC1 compared to the parental HDAC inhibitor CI994. TW9 was more potent in inhibiting tumor cell proliferation compared to (+)-JQ1, CI994 alone or combined treatment of both inhibitors. Sequential administration of gemcitabine and TW9 showed additional synergistic antitumor effects. Microarray analysis revealed that dysregulation of a FOSL1-directed transcriptional program contributed to the antitumor effects of TW9. Our results demonstrate the potential of a dual chromatin-targeting strategy in the treatment of PDAC and provide a rationale for further development of multitarget inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/química , Carcinoma Ductal Pancreático/genética , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas c-fos/genética , Triazoles/química , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Desacetilasa 1/antagonistas & inhibidores , Humanos , Neoplasias Pancreáticas/metabolismo , Dominios Proteicos/efectos de los fármacos , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Gemcitabina
6.
Proc Natl Acad Sci U S A ; 113(36): E5271-80, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27551077

RESUMEN

The tumor suppressor p53 has the most frequently mutated gene in human cancers. Many of p53's oncogenic mutants are just destabilized and rapidly aggregate, and are targets for stabilization by drugs. We found certain 2-sulfonylpyrimidines, including one named PK11007, to be mild thiol alkylators with anticancer activity in several cell lines, especially those with mutationally compromised p53. PK11007 acted by two routes: p53 dependent and p53 independent. PK11007 stabilized p53 in vitro via selective alkylation of two surface-exposed cysteines without compromising its DNA binding activity. Unstable p53 was reactivated by PK11007 in some cancer cell lines, leading to up-regulation of p53 target genes such as p21 and PUMA. More generally, there was cell death that was independent of p53 but dependent on glutathione depletion and associated with highly elevated levels of reactive oxygen species and induction of endoplasmic reticulum (ER) stress, as also found for the anticancer agent PRIMA-1(MET)(APR-246). PK11007 may be a lead for anticancer drugs that target cells with nonfunctional p53 or impaired reactive oxygen species (ROS) detoxification in a wide variety of mutant p53 cells.


Asunto(s)
Alquilantes/administración & dosificación , Antineoplásicos/administración & dosificación , Neoplasias/tratamiento farmacológico , Pirimidinas/administración & dosificación , Sulfonas/administración & dosificación , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Cristalografía por Rayos X , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Mutación , Neoplasias/genética , Especies Reactivas de Oxígeno/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(47): E7456-E7463, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821763

RESUMEN

Despite the recent rapid progress in cryo-electron microscopy (cryo-EM), there still exist ample opportunities for improvement in sample preparation. Macromolecular complexes may disassociate or adopt nonrandom orientations against the extended air-water interface that exists for a short time before the sample is frozen. We designed a hollow support structure using 3D DNA origami to protect complexes from the detrimental effects of cryo-EM sample preparation. For a first proof-of-principle, we concentrated on the transcription factor p53, which binds to specific DNA sequences on double-stranded DNA. The support structures spontaneously form monolayers of preoriented particles in a thin film of water, and offer advantages in particle picking and sorting. By controlling the position of the binding sequence on a single helix that spans the hollow support structure, we also sought to control the orientation of individual p53 complexes. Although the latter did not yet yield the desired results, the support structures did provide partial information about the relative orientations of individual p53 complexes. We used this information to calculate a tomographic 3D reconstruction, and refined this structure to a final resolution of ∼15 Å. This structure settles an ongoing debate about the symmetry of the p53 tetramer bound to DNA.


Asunto(s)
Microscopía por Crioelectrón/métodos , ADN/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , ADN/química , Humanos , Imagenología Tridimensional/métodos , Sustancias Macromoleculares/química , Conformación Proteica , Multimerización de Proteína , Agua
8.
Nucleic Acids Res ; 41(12): 6034-44, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630318

RESUMEN

The p53 cancer mutant Y220C is an excellent paradigm for rescuing the function of conformationally unstable p53 mutants because it has a unique surface crevice that can be targeted by small-molecule stabilizers. Here, we have identified a compound, PK7088, which is active in vitro: PK7088 bound to the mutant with a dissociation constant of 140 µM and raised its melting temperature, and we have determined the binding mode of a close structural analogue by X-ray crystallography. We showed that PK7088 is biologically active in cancer cells carrying the Y220C mutant by a battery of tests. PK7088 increased the amount of folded mutant protein with wild-type conformation, as monitored by immunofluorescence, and restored its transcriptional functions. It induced p53-Y220C-dependent growth inhibition, cell-cycle arrest and apoptosis. Most notably, PK7088 increased the expression levels of p21 and the proapoptotic NOXA protein. PK7088 worked synergistically with Nutlin-3 on up-regulating p21 expression, whereas Nutlin-3 on its own had no effect, consistent with its mechanism of action. PK7088 also restored non-transcriptional apoptotic functions of p53 by triggering nuclear export of BAX to the mitochondria. We suggest a set of criteria for assigning activation of p53.


Asunto(s)
Antineoplásicos/farmacología , Mutación , Pirazoles/farmacología , Pirroles/farmacología , Proteína p53 Supresora de Tumor/efectos de los fármacos , Antineoplásicos/química , Apoptosis , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Genes p53 , Humanos , Conformación Proteica/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Pirazoles/química , Pirroles/química , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(42): 16906-10, 2012 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-23035244

RESUMEN

The proteins MDM2 and MDM4 are key negative regulators of the tumor suppressor protein p53, which are frequently upregulated in cancer cells. They inhibit the transactivation activity of p53 by binding separately or in concert to its transactivation domain. MDM2 is also a ubiquitin ligase that leads to the degradation of p53. Accordingly, MDM2 and MDM4 are important targets for drugs to inhibit their binding to p53. We found from in silico screening and confirmed by experiment that lithocholic acid (LCA) binds to the p53 binding sites of both MDM2 and MDM4 with a fivefold preference for MDM4. LCA is an endogenous steroidal bile acid, variously reported to have both carcinogenic and apoptotic activities. The comparison of LCA effects on apoptosis in HCT116 p53(+/+) vs. p53(-/-) cells shows a predominantly p53-mediated induction of caspase-3/7. The dissociation constants are in the µM region, but only modest inhibition of binding of MDM2 and MDM4 is required to negate their upregulation because they have to compete with transcriptional coactivator p300 for binding to p53. Binding was weakened by structural changes in LCA, and so it may be a natural ligand of MDM2 and MDM4, raising the possibility that MDM proteins may be sensors for specific steroids.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/fisiología , Ácido Litocólico/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteína p53 Supresora de Tumor/metabolismo , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Proteínas de Ciclo Celular , Línea Celular Tumoral , Cromatografía de Afinidad , Escherichia coli , Polarización de Fluorescencia , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ultracentrifugación
10.
Proc Natl Acad Sci U S A ; 108(20): 8251-6, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21525412

RESUMEN

Lys120 in the DNA-binding domain (DBD) of p53 becomes acetylated in response to DNA damage. But, the role and effects of acetylation are obscure. We prepared p53 specifically acetylated at Lys120, AcK120p53, by in vivo incorporation of acetylated lysine to study biophysical and structural consequences of acetylation that may shed light on its biological role. Acetylation had no affect on the overall crystal structure of the DBD at 1.9-Å resolution, but significantly altered the effects of salt concentration on specificity of DNA binding. p53 binds DNA randomly in vitro at effective physiological salt concentration and does not bind specifically to DNA or distinguish among its different response elements until higher salt concentrations. But, on acetylation, AcK120p53 exhibited specific DNA binding and discriminated among response elements at effective physiological salt concentration. AcK120p53 and p53 had the highest affinity to the same DNA sequence, although acetylation reduced the importance of the consensus C and G at positions 4 and 7, respectively. Mass spectrometry of p53 and AcK120p53 DBDs bound to DNA showed they preferentially segregated into complexes that were either DNA(p53DBD)(4) or DNA(AcK120DBD)(4), indicating that the different DBDs prefer different quaternary structures. These results are consistent with electron microscopy observations that p53 binds to nonspecific DNA in different, relaxed, quaternary states from those bound to specific sequences. Evidence is accumulating that p53 can be sequestered by random DNA, and target search requires acetylation of Lys120 and/or interaction with other factors to impose specificity of binding via modulating changes in quaternary structure.


Asunto(s)
ADN/metabolismo , Methanosarcina barkeri/metabolismo , Ingeniería de Proteínas , Proteína p53 Supresora de Tumor/química , Acetilación , Sitios de Unión , Cristalografía por Rayos X , Daño del ADN , Escherichia coli , Lisina/química , Lisina-ARNt Ligasa/metabolismo , Methanosarcina barkeri/química , Modelos Moleculares , Estructura Terciaria de Proteína , Sales (Química)/química
11.
Proc Natl Acad Sci U S A ; 108(2): 557-62, 2011 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-21178074

RESUMEN

The multidomain homotetrameric tumor suppressor p53 has two modes of binding dsDNA that are thought to be responsible for scanning and recognizing specific response elements (REs). The C termini bind nonspecifically to dsDNA. The four DNA-binding domains (DBDs) bind REs that have two symmetric 10 base-pair sequences. p53 bound to a 20-bp RE has the DBDs enveloping the DNA, which is in the center of the molecule surrounded by linker sequences to the tetramerization domain (Tet). We investigated by electron microscopy structures of p53 bound to DNA sequences consisting of a 20-bp RE with either 12 or 20 bp nonspecific extensions on either end. We found a variety of structures that give clues to recognition and scanning mechanisms. The 44- and 60-bp sequences gave rise to three and four classes of structures, respectively. One was similar to the known 20-bp structure, but the DBDs in the other classes were loosely arranged and incompatible with specific DNA recognition. Some of the complexes had density consistent with the C termini extending from Tet to the DNA, adjacent to the DBDs. Single-molecule fluorescence resonance energy transfer experiments detected the approach of the C termini towards the DBDs on addition of DNA. The structural data are consistent with p53 sliding along DNA via its C termini and the DNA-binding domains hopping on and off during searches for REs. The loose structures and posttranslational modifications account for the affinity of nonspecific DNA for p53 and point to a mechanism of enhancement of specificity by its binding to effector proteins.


Asunto(s)
ADN/química , Microscopía Electrónica/métodos , Proteína p53 Supresora de Tumor/química , Alanina/química , Cistina/química , Transferencia Resonante de Energía de Fluorescencia , Genes p53 , Humanos , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
12.
Cell Death Dis ; 15(6): 408, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862470

RESUMEN

The cavity-creating p53 cancer mutation Y220C is an ideal paradigm for developing small-molecule drugs based on protein stabilization. Here, we have systematically analyzed the structural and stability effects of all oncogenic Tyr-to-Cys mutations (Y126C, Y163C, Y205C, Y220C, Y234C, and Y236C) in the p53 DNA-binding domain (DBD). They were all highly destabilizing, drastically lowering the melting temperature of the protein by 8-17 °C. In contrast, two non-cancerous mutations, Y103C and Y107C, had only a moderate effect on protein stability. Differential stabilization of the mutants upon treatment with the anticancer agent arsenic trioxide and stibogluconate revealed an interesting proximity effect. Crystallographic studies complemented by MD simulations showed that two of the mutations, Y234C and Y236C, create internal cavities of different size and shape, whereas the others induce unique surface lesions. The mutation-induced pockets in the Y126C and Y205C mutant were, however, relatively small compared with that of the already druggable Y220C mutant. Intriguingly, our structural studies suggest a pronounced plasticity of the mutation-induced pocket in the frequently occurring Y163C mutant, which may be exploited for the development of small-molecule stabilizers. We point out general principles for reactivating thermolabile cancer mutants and highlight special cases where mutant-specific drugs are needed for the pharmacological rescue of p53 function in tumors.


Asunto(s)
Mutación , Neoplasias , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Mutación/genética , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Trióxido de Arsénico/farmacología , Simulación de Dinámica Molecular , Estabilidad Proteica/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química
13.
ACS Chem Biol ; 19(2): 266-279, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38291964

RESUMEN

Bromodomain and extra-terminal domain (BET) proteins and histone deacetylases (HDACs) are prime targets in cancer therapy. Recent research has particularly focused on the development of dual BET/HDAC inhibitors for hard-to-treat tumors, such as pancreatic cancer. Here, we developed a new series of potent dual BET/HDAC inhibitors by choosing starting scaffolds that enabled us to optimally merge the two functionalities into a single compound. Systematic structure-guided modification of both warheads then led to optimized binders that were superior in potency to both parent compounds, with the best molecules of this series binding to both BRD4 bromodomains as well as HDAC1/2 with EC50 values in the 100 nM range in cellular NanoBRET target engagement assays. For one of our lead molecules, we could also show the selective inhibition of HDAC1/2 over all other zinc-dependent HDACs. Importantly, this on-target activity translated into promising efficacy in pancreatic cancer and NUT midline carcinoma cells. Our lead molecules effectively blocked histone H3 deacetylation in pancreatic cancer cells and upregulated the tumor suppressor HEXIM1 and proapoptotic p57, both markers of BET inhibition. In addition, they have the potential to downregulate the oncogenic drivers of NUT midline carcinoma, as demonstrated for MYC and TP63 mRNA levels. Overall, this study expands the portfolio of available dual BET/class I HDAC inhibitors for future translational studies in different cancer models.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias Pancreáticas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/química , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Farmacóforo , Neoplasias Pancreáticas/tratamiento farmacológico , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Proteínas de Unión al ARN , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/metabolismo
14.
J Med Chem ; 67(1): 674-690, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38126712

RESUMEN

MST1, MST2, MST3, MST4, and YSK1 are conserved members of the mammalian sterile 20-like serine/threonine (MST) family that regulate cellular functions such as proliferation and migration. The MST3 isozyme plays a role in regulating cell growth and apoptosis, and its dysregulation has been linked to high-grade tumors. To date, there are no isoform-selective inhibitors that could be used for validating the role of MST3 in tumorigenesis. We designed a series of 3-aminopyrazole-based macrocycles based on the structure of a promiscuous inhibitor. By varying the moieties targeting the solvent-exposed region and optimizing the linker, macrocycle JA310 (21c) was synthesized. JA310 exhibited high cellular potency for MST3 (EC50 = 106 nM) and excellent kinome-wide selectivity. The crystal structure of the MST3-JA310 complex provided intriguing insights into the binding mode, which is associated with large-scale structural rearrangements. In summary, JA310 demonstrates the utility of macrocyclization for the design of highly selective inhibitors and presents the first chemical probe for MST3.


Asunto(s)
Apoptosis , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Fosforilación , Mamíferos/metabolismo
15.
J Med Chem ; 67(5): 3813-3842, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38422480

RESUMEN

Mammalian STE20-like (MST) kinases 1-4 play key roles in regulating the Hippo and autophagy pathways, and their dysregulation has been implicated in cancer development. In contrast to the well-studied MST1/2, the roles of MST3/4 are less clear, in part due to the lack of potent and selective inhibitors. Here, we re-evaluated literature compounds, and used structure-guided design to optimize the p21-activated kinase (PAK) inhibitor G-5555 (8) to selectively target MST3/4. These efforts resulted in the development of MR24 (24) and MR30 (27) with good kinome-wide selectivity and high cellular potency. The distinct cellular functions of closely related MST kinases can now be elucidated with subfamily-selective chemical tool compounds using a combination of the MST1/2 inhibitor PF-06447475 (2) and the two MST3/4 inhibitors developed. We found that MST3/4-selective inhibition caused a cell-cycle arrest in the G1 phase, whereas MST1/2 inhibition resulted in accumulation of cells in the G2/M phase.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Quinasas p21 Activadas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Mamíferos/metabolismo
16.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405908

RESUMEN

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55 as a potent dual EPHA2/GAK inhibitor. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells, mainly via its EPHA2 activity, and is therefore a promising candidate for further optimization of its activity against dengue virus.

17.
J Med Chem ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028937

RESUMEN

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55, a potent inhibitor of EPHA2/A4 and GAK. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/A4 and GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells. However, further investigations are needed to determine whether this was a compound-specific effect or target-related.

18.
J Biol Chem ; 287(53): 44330-7, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23135266

RESUMEN

The transcription factor p53 is a key tumor suppressor protein. In about half of human cancers, p53 is inactivated directly through mutation in its sequence-specific DNA-binding domain. Drosophila p53 (Dmp53) has similar apoptotic functions as its human homolog and is therefore an attractive model system for studying cancer pathways. To probe the structure and function of Dmp53, we studied the effect of point mutations, corresponding to cancer hot spot mutations in human p53 (Hp53), on the stability and DNA binding affinity of the full-length protein. Despite low sequence conservation, the Hp53 and Dmp53 proteins had a similar melting temperature and generally showed a similar energetic and functional response to cancer-associated mutations. We also found a correlation between the thermodynamic stability of the mutant proteins and their rate of aggregation. The effects of the mutations were rationalized based on homology modeling of the Dmp53 DNA-binding domain, suggesting that the drastically different effects of a cancer mutation in the loop-sheet-helix motif (R282W in Hp53 and R268W in Dmp53) on stability and DNA binding affinity of the two proteins are related to conformational differences in the L1 loop adjacent to the mutation site. On the basis of these data, we discuss the advantages and limitations of using Dmp53 as a model system for studying p53 function and testing p53 rescue drugs.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila/genética , Mutación , Neoplasias/genética , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Secuencia de Aminoácidos , Animales , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Humanos , Datos de Secuencia Molecular , Neoplasias/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Proteína p53 Supresora de Tumor/metabolismo
19.
Open Biol ; 13(5): 230031, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37253421

RESUMEN

FUBP-interacting repressor (FIR) is a suppressor of transcription of the proto-oncogene MYC. FIR binds to the far upstream element (FUSE) of the MYC promoter. Competition of FIR with FUSE-binding protein 1 (FUBP1) is a key mechanism of MYC transcriptional regulation. To gain insights into the structural mechanisms regulating FIR DNA interaction, we determined the crystal structure of two FIR RRM domains (RRM1-2) with single-stranded FUSE DNA sequences. These structures revealed an ability of the RRM domain to recognize diverse FUSE regions through distinct intermolecular interactions and binding modes. Comparative structural analyses against available RRM-ssDNA/RNA complexes showed that the nucleotide configurations in FIR were similar to those in other RRMs that harbour a tyrosine at the conserved aromatic position in the RNP2 motif (Y-type RRM), but not those with a phenylalanine (F-type RRM). Site-directed mutagenesis experiments demonstrated that a single substitution, Y115F, altered the binding affinities of oligonucleotides to FIR RRM, suggesting an important role of this conserved aromatic residue in ssDNA/RNA interactions. Our study provides the structural basis for further mechanistic studies on this important protein-DNA interaction.


Asunto(s)
ARN , Proteínas Represoras , Factores de Empalme de ARN , Proteínas Represoras/metabolismo , Unión Proteica , ARN/metabolismo , ADN/metabolismo
20.
J Med Chem ; 66(1): 976-990, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36580549

RESUMEN

The complex between the N-methyl-d-aspartate receptor (NMDAR), neuronal nitric oxide synthase (nNOS), and the postsynaptic density protein-95 (PSD-95) is an attractive therapeutic target for the treatment of acute ischemic stroke. The complex is formed via the PDZ protein domains of PSD-95, and efforts to disrupt the complex have generally been based on C-terminal peptides derived from the NMDAR. However, nNOS binds PSD-95 through a ß-hairpin motif, providing an alternative starting point for developing PSD-95 inhibitors. Here, we designed a cyclic nNOS ß-hairpin mimetic peptide and generated cyclic nNOS ß-hairpin peptide arrays with natural and unnatural amino acids (AAs), which provided molecular insights into this interaction. We then optimized cyclic peptides and identified a potent inhibitor of the nNOS/PSD-95 interaction, with the highest affinity reported thus far for a peptide macrocycle inhibitor of PDZ domains, which serves as a template for the development of treatment for acute ischemic stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Humanos , Óxido Nítrico Sintasa de Tipo I , Péptidos Cíclicos/farmacología , Proteínas de la Membrana/metabolismo , Homólogo 4 de la Proteína Discs Large
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA