Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 606(7913): 389-395, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35589842

RESUMEN

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.


Asunto(s)
Antígenos de Neoplasias , Supervivientes de Cáncer , Neoplasias Pancreáticas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Linfocitos T/inmunología , Escape del Tumor/inmunología
2.
Ann Surg ; 277(2): e396-e405, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36745763

RESUMEN

BACKGROUND: The long-term outcomes following surgical resection for pancreatic ductal adenocarcinoma (PDAC) remains poor, with only 20% of patients surviving 5 years after pancreatectomy. Patient selection for surgery remains suboptimal largely due to the absence of consideration of aggressive tumor biology. OBJECTIVE: The aim of this study was to evaluate traditional staging criteria for PDAC in the setting of molecular subtypes. METHODS: Clinicopathological data were obtained for 5 independent cohorts of consecutive unselected patients, totaling n = 1298, including n = 442 that underwent molecular subtyping. The main outcome measure was disease-specific survival following surgical resection for PDAC stratified according to the American Joint Commission for Cancer (TNM) staging criteria, margin status, and molecular subtype. RESULTS: TNM staging criteria and margin status confers prognostic value only in tumors with classical pancreatic subtype. Patients with tumors that are of squamous subtype, have a poor outcome irrespective of favorable traditional pathological staging [hazard ratio (HR) 1.54, 95% confidence interval (CI) 1.04-2.28, P = 0.032]. Margin status has no impact on survival in the squamous subtype (16.0 vs 12.1 months, P = 0.374). There were no differences in molecular subtype or gene expression of tumors with positive resection margin status. CONCLUSIONS: Aggressive tumor biology as measured by molecular subtype predicts poor outcome following pancreatectomy for PDAC and should be utilized to inform patient selection for surgery.


Asunto(s)
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Pronóstico , Carcinoma Ductal Pancreático/patología , Pancreatectomía , Estadificación de Neoplasias , Carcinoma de Células Escamosas/cirugía , Estudios Retrospectivos , Tasa de Supervivencia , Neoplasias Pancreáticas
3.
Nature ; 543(7643): 65-71, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199314

RESUMEN

The diagnosis of pancreatic neuroendocrine tumours (PanNETs) is increasing owing to more sensitive detection methods, and this increase is creating challenges for clinical management. We performed whole-genome sequencing of 102 primary PanNETs and defined the genomic events that characterize their pathogenesis. Here we describe the mutational signatures they harbour, including a deficiency in G:C > T:A base excision repair due to inactivation of MUTYH, which encodes a DNA glycosylase. Clinically sporadic PanNETs contain a larger-than-expected proportion of germline mutations, including previously unreported mutations in the DNA repair genes MUTYH, CHEK2 and BRCA2. Together with mutations in MEN1 and VHL, these mutations occur in 17% of patients. Somatic mutations, including point mutations and gene fusions, were commonly found in genes involved in four main pathways: chromatin remodelling, DNA damage repair, activation of mTOR signalling (including previously undescribed EWSR1 gene fusions), and telomere maintenance. In addition, our gene expression analyses identified a subgroup of tumours associated with hypoxia and HIF signalling.


Asunto(s)
Carcinoma Neuroendocrino/genética , Genoma Humano/genética , Genómica , Neoplasias Pancreáticas/genética , Secuencia de Bases , Proteínas de Unión a Calmodulina/genética , Ensamble y Desensamble de Cromatina/genética , Aberraciones Cromosómicas , Variaciones en el Número de Copia de ADN/genética , ADN Glicosilasas/genética , Análisis Mutacional de ADN , Reparación del ADN/genética , Femenino , Mutación de Línea Germinal/genética , Humanos , Masculino , Proteína EWS de Unión a ARN , Proteínas de Unión al ARN/genética , Serina-Treonina Quinasas TOR/metabolismo , Telómero/genética , Telómero/metabolismo
5.
Gastroenterology ; 160(1): 362-377.e13, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33039466

RESUMEN

BACKGROUND & AIMS: Continuing recalcitrance to therapy cements pancreatic cancer (PC) as the most lethal malignancy, which is set to become the second leading cause of cancer death in our society. The study aim was to investigate the association between DNA damage response (DDR), replication stress, and novel therapeutic response in PC to develop a biomarker-driven therapeutic strategy targeting DDR and replication stress in PC. METHODS: We interrogated the transcriptome, genome, proteome, and functional characteristics of 61 novel PC patient-derived cell lines to define novel therapeutic strategies targeting DDR and replication stress. Validation was done in patient-derived xenografts and human PC organoids. RESULTS: Patient-derived cell lines faithfully recapitulate the epithelial component of pancreatic tumors, including previously described molecular subtypes. Biomarkers of DDR deficiency, including a novel signature of homologous recombination deficiency, cosegregates with response to platinum (P < .001) and PARP inhibitor therapy (P < .001) in vitro and in vivo. We generated a novel signature of replication stress that predicts response to ATR (P < .018) and WEE1 inhibitor (P < .029) treatment in both cell lines and human PC organoids. Replication stress was enriched in the squamous subtype of PC (P < .001) but was not associated with DDR deficiency. CONCLUSIONS: Replication stress and DDR deficiency are independent of each other, creating opportunities for therapy in DDR-proficient PC and after platinum therapy.


Asunto(s)
Adenocarcinoma/patología , Daño del ADN/genética , Reparación del ADN/genética , Replicación del ADN/genética , Neoplasias Pancreáticas/patología , Adenocarcinoma/genética , Adenocarcinoma/terapia , Biomarcadores , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Terapia Molecular Dirigida , Organoides , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Nature ; 531(7592): 47-52, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26909576

RESUMEN

Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-ß, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63∆N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.


Asunto(s)
Genes Relacionados con las Neoplasias/genética , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Carcinoma Ductal Pancreático/clasificación , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metilación de ADN , Proteínas de Unión al ADN/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Factor Nuclear 3-beta del Hepatocito/genética , Factor Nuclear 3-gamma del Hepatocito/genética , Histona Demetilasas/genética , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio/genética , Humanos , Ratones , Proteínas Nucleares/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pronóstico , Receptores Citoplasmáticos y Nucleares/genética , Análisis de Supervivencia , Transactivadores/genética , Factores de Transcripción/genética , Transcripción Genética , Transcriptoma , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Pez Cebra
7.
PLoS Biol ; 16(8): e2006031, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30102688

RESUMEN

Whereas biological materials were once transferred freely, there has been a marked shift in the formalisation of exchanges involving these materials, primarily through the use of Material Transfer Agreements (MTAs). This paper considers how risk aversion dominates MTA negotiations and the impact it may have on scientific progress. Risk aversion is often based on unwarranted fears of incurring liability through the use of a material or loss of control or missing out on commercialisation opportunities. Evidence to date has suggested that complexity tends to permeate even straightforward transactions despite extensive efforts to implement simple, standard MTAs. We argue that in most cases, MTAs need do little more than establish provenance, and any attempt to extend MTAs beyond this simple function constitutes stifling behaviour. Drawing on available examples of favourable practice, we point to a number of strategies that may usefully be employed to reduce risk-averse tendencies, including the promotion of simplicity, education of those engaged in the MTA process, and achieving a cultural shift in the way in which technology transfer office (TTO) success is measured in institutions employing MTAs.


Asunto(s)
Propiedad/ética , Propiedad/legislación & jurisprudencia , Investigación/legislación & jurisprudencia , Humanos , Químicos de Laboratorio/provisión & distribución , Responsabilidad Legal/economía , Investigación/tendencias , Riesgo
8.
Nature ; 518(7540): 495-501, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25719666

RESUMEN

Pancreatic cancer remains one of the most lethal of malignancies and a major health burden. We performed whole-genome sequencing and copy number variation (CNV) analysis of 100 pancreatic ductal adenocarcinomas (PDACs). Chromosomal rearrangements leading to gene disruption were prevalent, affecting genes known to be important in pancreatic cancer (TP53, SMAD4, CDKN2A, ARID1A and ROBO2) and new candidate drivers of pancreatic carcinogenesis (KDM6A and PREX2). Patterns of structural variation (variation in chromosomal structure) classified PDACs into 4 subtypes with potential clinical utility: the subtypes were termed stable, locally rearranged, scattered and unstable. A significant proportion harboured focal amplifications, many of which contained druggable oncogenes (ERBB2, MET, FGFR1, CDK6, PIK3R3 and PIK3CA), but at low individual patient prevalence. Genomic instability co-segregated with inactivation of DNA maintenance genes (BRCA1, BRCA2 or PALB2) and a mutational signature of DNA damage repair deficiency. Of 8 patients who received platinum therapy, 4 of 5 individuals with these measures of defective DNA maintenance responded.


Asunto(s)
Análisis Mutacional de ADN , Genoma Humano/genética , Genómica , Mutación/genética , Neoplasias Pancreáticas/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Reparación del ADN/genética , Femenino , Genes BRCA1 , Genes BRCA2 , Marcadores Genéticos/genética , Inestabilidad Genómica/genética , Genotipo , Humanos , Ratones , Neoplasias Pancreáticas/clasificación , Neoplasias Pancreáticas/tratamiento farmacológico , Platino (Metal)/farmacología , Mutación Puntual/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Hered Cancer Clin Pract ; 19(1): 33, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399810

RESUMEN

BACKGROUND: The Australian Pancreatic Cancer Screening Program (APCSP) offers endoscopic ultrasound surveillance for individuals at increased risk of pancreatic ductal adenocarcinoma (PDAC) with all participants requiring assessment by a Familial Cancer Service before or after study enrolment. METHODS: Individuals aged 40-80 years (or 10 years younger than the earliest PDAC diagnosis) were eligible for APCSP study entry if they had 1) ≥ two blood relatives with PDAC (at least one of first-degree association); 2) a clinical or genetic diagnosis of Hereditary Pancreatitis or Peutz-Jeghers syndrome irrespective of PDAC family history; or 3) a known PDAC predisposition germline pathogenic variant (BRCA2, PALB2, CDKN2A, or Lynch syndrome) with ≥one PDAC-affected first- or second-degree relative. Retrospective medical record review was conducted for APCSP participants enrolled at the participating Australian hospitals from January 2011 to December 2019. We audited the genetic investigations offered by multiple Familial Cancer Services who assessed APCSP participants according to national guidelines, local clinical protocol and/or the availability of external research-funded testing, and the subsequent findings. Descriptive statistical analysis was performed using Microsoft Excel. RESULTS: Of 189 kindreds (285 participants), 50 kindreds (71 participants) had a known germline pathogenic variant at enrolment (BRCA2 n = 35, PALB2 n = 6, CDKN2A n = 3, STK11 n = 3, PRSS1 n = 2, MLH1 n = 1). Forty-eight of 136 (35%) kindreds with no known germline pathogenic variant were offered mutation analysis; 89% was clinic-funded, with increasing self-funded testing since 2016. The relatively low rates of genetic testing performed reflects initial strict criteria for clinic-funded genetic testing. New germline pathogenic variants were detected in five kindreds (10.4%) after study enrolment (BRCA2 n = 3 kindreds, PALB2 n = 1, CDKN2A n = 1). Of note, only eight kindreds were reassessed by a Familial Cancer Service since enrolment, with a further 21 kindreds identified as being suitable for reassessment. CONCLUSION: Germline pathogenic variants associated with PDAC were seen in 29.1% of our high-risk cohort (55/189 kindreds; 82/285 participants). Importantly, 10.4% of kindreds offered genetic testing were newly identified as having germline pathogenic variants, with majority being BRCA2. As genetic testing standards evolve rapidly in PDAC, 5-yearly reassessment of high-risk individuals by Familial Cancer Services is warranted.

10.
Ann Surg ; 272(2): 366-376, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32675551

RESUMEN

OBJECTIVE: We aimed to define preoperative clinical and molecular characteristics that would allow better patient selection for operative resection. BACKGROUND: Although we use molecular selection methods for systemic targeted therapies, these principles are not applied to surgical oncology. Improving patient selection is of vital importance for the operative treatment of pancreatic cancer (pancreatic ductal adenocarcinoma). Although surgery is the only chance of long-term survival, 80% still succumb to the disease and approximately 30% die within 1 year, often sooner than those that have unresected local disease. METHOD: In 3 independent pancreatic ductal adenocarcinoma cohorts (total participants = 1184) the relationship between aberrant expression of prometastatic proteins S100A2 and S100A4 and survival was assessed. A preoperative nomogram based on clinical variables available before surgery and expression of these proteins was constructed and compared to traditional measures, and a postoperative nomogram. RESULTS: High expression of either S100A2 or S100A4 was independent poor prognostic factors in a training cohort of 518 participants. These results were validated in 2 independent patient cohorts (Glasgow, n = 198; Germany, n = 468). Aberrant biomarker expression stratified the cohorts into 3 distinct prognostic groups. A preoperative nomogram incorporating S100A2 and S100A4 expression predicted survival and nomograms derived using postoperative clinicopathological variables. CONCLUSIONS: Of those patients with a poor preoperative nomogram score, approximately 50% of patients died within a year of resection. Nomograms have the potential to improve selection for surgery and neoadjuvant therapy, avoiding surgery in aggressive disease, and justifying more extensive resections in biologically favorable disease.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/mortalidad , Factores Quimiotácticos/genética , Pancreatectomía/métodos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/mortalidad , Proteínas S100/genética , Anciano , Carcinoma Ductal Pancreático/cirugía , Causas de Muerte , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Nomogramas , Pancreatectomía/mortalidad , Neoplasias Pancreáticas/cirugía , Selección de Paciente , Pronóstico , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Medición de Riesgo , Análisis de Supervivencia
11.
Artículo en Inglés | MEDLINE | ID: mdl-31666883

RESUMEN

BACKGROUND: Pancreatic cancer (PC) is an aggressive disease with a dismal 5-year survival rate. Surveillance of high-risk individuals is hoped to improve survival outcomes by detection of precursor lesions or early-stage malignancy. METHODS: Since 2011, a national high-risk cohort recruited through St Vincent's Hospital, Sydney, has undergone prospective PC screening incorporating annual endoscopic ultrasound, formal genetic counselling and mutation analysis as appropriate. PancPRO, a Bayesian PC risk assessment model, was used to estimate 5-year and lifetime PC risks for familial pancreatic cancer (FPC) participants and this was compared to their perceived chance of pancreatic and other cancers. Genetic counselling guidelines were developed to improve consistency. Follow-up questionnaires were used to assess the role of genetic counselling and testing. RESULTS: We describe the Australian PC screening program design and recruitment strategy and the results of the first 102 individuals who have completed at least one-year of follow-up. Seventy-nine participants met the FPC criteria (≥ two first-degree relatives affected), 22 individuals had both a BRCA2 pathogenic variant and a close relative with PC and one had a clinical diagnosis of Peutz-Jeghers syndrome. Participants reported a high perceived chance of developing PC regardless of their genetic testing status. PancPRO reported FPC participants' mean 5-year and lifetime PC risks as 1.81% (range 0.2-3.2%) and 10.17% (range 2.4-14.4%), respectively. Participants' perceived PC chance did not correlate with their PancPRO 5-year (r = - 0.17, p = 0.128) and lifetime PC risks (r = 0.19, p = 0.091). Two-thirds felt that current genetic testing would help them, and 91% of tested participants were glad to have undergone genetic testing. Overall, 79% of participants found genetic counselling to be helpful, and 88% reported they would recommend counselling to their relatives. CONCLUSIONS: Participants reported multiple benefits of genetic counselling and testing but continue to seek greater clarification about their individual PC risk. Extension of PancPRO is required to enable personalised PC risk assessment for all high-risk sub-groups. More detailed discussion of PC risk for BRCA2 pathogenic variant carriers, providing a written summary in all cases and a plan for genetics review were identified as areas for improvement.

12.
Gut ; 67(12): 2142-2155, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29080858

RESUMEN

OBJECTIVE: Extensive molecular heterogeneity of pancreatic ductal adenocarcinoma (PDA), few effective therapies and high mortality make this disease a prime model for advancing development of tailored therapies. The p16-cyclin D-cyclin-dependent kinase 4/6-retinoblastoma (RB) protein (CDK4) pathway, regulator of cell proliferation, is deregulated in PDA. Our aim was to develop a novel personalised treatment strategy for PDA based on targeting CDK4. DESIGN: Sensitivity to potent CDK4/6 inhibitor PD-0332991 (palbociclib) was correlated to protein and genomic data in 19 primary patient-derived PDA lines to identify biomarkers of response. In vivo efficacy of PD-0332991 and combination therapies was determined in subcutaneous, intrasplenic and orthotopic tumour models derived from genome-sequenced patient specimens and genetically engineered model. Mechanistically, monotherapy and combination therapy were investigated in the context of tumour cell and extracellular matrix (ECM) signalling. Prognostic relevance of companion biomarker, RB protein, was evaluated and validated in independent PDA patient cohorts (>500 specimens). RESULTS: Subtype-specific in vivo efficacy of PD-0332991-based therapy was for the first time observed at multiple stages of PDA progression: primary tumour growth, recurrence (second-line therapy) and metastatic setting and may potentially be guided by a simple biomarker (RB protein). PD-0332991 significantly disrupted surrounding ECM organisation, leading to increased quiescence, apoptosis, improved chemosensitivity, decreased invasion, metastatic spread and PDA progression in vivo. RB protein is prevalent in primary operable and metastatic PDA and may present a promising predictive biomarker to guide this therapeutic approach. CONCLUSION: This study demonstrates the promise of CDK4 inhibition in PDA over standard therapy when applied in a molecular subtype-specific context.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Fosforilación , Piperazinas/uso terapéutico , Pronóstico , Piridinas/uso terapéutico , Proteína de Retinoblastoma/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Gastroenterology ; 152(1): 68-74.e2, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27856273

RESUMEN

Pancreatic cancer is molecularly diverse, with few effective therapies. Increased mutation burden and defective DNA repair are associated with response to immune checkpoint inhibitors in several other cancer types. We interrogated 385 pancreatic cancer genomes to define hypermutation and its causes. Mutational signatures inferring defects in DNA repair were enriched in those with the highest mutation burdens. Mismatch repair deficiency was identified in 1% of tumors harboring different mechanisms of somatic inactivation of MLH1 and MSH2. Defining mutation load in individual pancreatic cancers and the optimal assay for patient selection may inform clinical trial design for immunotherapy in pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Reparación de la Incompatibilidad de ADN/genética , Mutación , Neoplasias Pancreáticas/genética , Transcriptoma , Adulto , Anciano , Anciano de 80 o más Años , Análisis Mutacional de ADN , Femenino , Genoma , Humanos , Masculino , Persona de Mediana Edad , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
16.
Nature ; 491(7424): 399-405, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23103869

RESUMEN

Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.


Asunto(s)
Axones/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Genoma/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Animales , Dosificación de Gen , Regulación Neoplásica de la Expresión Génica , Humanos , Estimación de Kaplan-Meier , Ratones , Mutación , Proteínas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA