RESUMEN
Chronic musculoskeletal (MSK) pain is disabling to individuals and burdensome to society. A relationship between telomere length and resilience was reported in individuals with consideration for chronic pain intensity. While chronic pain associates with brain changes, little is known regarding the neurobiological interface of resilience. In a group of individuals with chronic MSK pain, we examined the relationships between a previously investigated resilience index, clinical pain and functioning measures, and pain-related brain structures, with consideration for sex and ethnicity/race. A cross-sectional analysis of 166 non-Hispanic Black and non-Hispanic White adults, 45-85 years of age with pain ≥ 1 body site (s) over the past 3 months was completed. Measures of clinical pain and functioning, biobehavioral and psychosocial resilience, and structural MRI were completed. Our findings indicate higher levels of resilience associate with lower levels of clinical pain and functional limitations. Significant associations between resilience, ethnicity/race, and/or sex, and pain-related brain gray matter structure were demonstrated in the right amygdaloid complex, bilateral thalamus, and postcentral gyrus. Our findings provide compelling evidence that in order to decipher the neurobiological code of chronic pain and related protective factors, it will be important to improve how chronic pain is phenotyped; to include an equal representation of females in studies including analyses stratifying by sex, and to consider other sociodemographic factors.
Asunto(s)
Encéfalo/diagnóstico por imagen , Dolor Crónico/diagnóstico por imagen , Dolor Crónico/etnología , Dimensión del Dolor/métodos , Resiliencia Psicológica/fisiología , Factores Sociodemográficos , Anciano , Anciano de 80 o más Años , Población Negra/etnología , Población Negra/psicología , Encéfalo/fisiología , Dolor Crónico/psicología , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dimensión del Dolor/psicología , Estudios Prospectivos , Población Blanca/etnología , Población Blanca/psicologíaRESUMEN
BACKGROUND: Pain is the hallmark symptom of knee osteoarthritis (OA), and varies widely across individuals. Previous research has demonstrated both fluctuating and stable pain trajectories in knee OA using various time periods. Changes in pain assessed quarterly (i.e. 3-month intervals) in knee OA are relatively unknown. The current study aimed to investigate temporal variations in pain over a one and a half year period (18 months) based on quarterly characteristic pain assessments, and to examine differences in pain patterns by sociodemographic and baseline pain characteristics. METHODS: The sample included a prospective cohort of 188 participants (mean age 58 years; 63% female; 52% non-Hispanic Black) with or at risk for knee OA from an ongoing multisite investigation of ethnic/race group differences. Knee pain intensity was self-reported at baseline and quarterly over an18-month period. Baseline pain assessment also included frequency, duration, and total number of pain sites. Group-based trajectory modeling was used to identify distinct pain trajectories. Multinomial logistic regression was used to examine associations between sociodemographic characteristics, risk factors, and pain trajectory groups. RESULTS: Pain trajectories were relatively stable among a sample of adults with knee pain. Four distinct pain trajectories emerged in the overall sample, with the largest proportion of participants (35.1%) classified in the moderate-high pain group. There were significant relationships between age, education, income, ethnicity/race and trajectory group; with younger, less educated, lower income, and non-Hispanic Black participants had a greater representation in the highest pain trajectory group. CONCLUSIONS: Pain remained stable across a one and a half-year period in adults with or at risk for knee osteoarthritis, based on quarterly assessments. Certain sociodemographic variables (e.g. ethnicity/race, education, income, age) may contribute to an increased risk of experiencing greater pain.
Asunto(s)
Osteoartritis de la Rodilla , Adulto , Negro o Afroamericano , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Osteoartritis de la Rodilla/diagnóstico , Osteoartritis de la Rodilla/epidemiología , Dolor , Estudios ProspectivosRESUMEN
Telomere length, a measure of cellular aging, is inversely associated with chronic pain severity. While psychological resilience factors (e.g., optimism, acceptance, positive affect, and active coping) are associated with lower levels of clinical pain and greater physical functioning, it is unknown whether resilience may buffer against telomere shortening in individuals with chronic pain. Additionally, a broader conceptualization of resilience that includes social and biobehavioral factors may improve our understanding of the relationship between resilience, chronic pain, and health outcomes. In individuals with and without chronic knee pain, we investigated whether (1) psychological resilience would be positively associated with telomere length and if (2) a broader conceptualization of resilience including social and biobehavioral factors would strengthen the association. Seventy-nine adults, 45 to 85 years of age, with and without knee pain completed demographic, health, clinical pain, psychological, social, and biobehavioral questionnaires. Resilience levels were determined by summing the total number of measures indicating resilience based on published clinical ranges and norms. Blood samples were collected, and telomere length was determined. In regression analyses controlling for sex, race, age, and characteristic pain intensity, greater psychological resilience and psychosocial/biobehavioral resilience were associated with longer telomeres ( p = .0295 and p = .0116, respectively). When compared, psychosocial/biobehavioral resilience was significantly more predictive of telomere length than psychological resilience ( p < .0001). Findings are promising and encourage further investigations to enhance understanding of the biological interface of psychosocial and biobehavioral resilience factors in individuals with musculoskeletal chronic pain conditions.
Asunto(s)
Senescencia Celular/fisiología , Dolor Crónico/metabolismo , Articulación de la Rodilla/patología , Resiliencia Psicológica , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estrés Psicológico/metabolismo , Encuestas y Cuestionarios , Telómero/metabolismoRESUMEN
OBJECTIVE: Knee osteoarthritis (OA) is a leading cause of chronic pain in adults and shows wide interindividual variability, with peripheral and central factors contributing to the pain experience. Periarticular factors, such as muscle quality (eg, echo intensity [EI] and shear wave velocity [SWV]), may contribute to knee OA pain; however, the role of muscle quality in OA symptoms has yet to be fully established. METHODS: Twenty-six adults (age >50 years) meeting clinical criteria for knee OA were included in this cross-sectional study. Quantitative ultrasound imaging was used to quantify EI and SWV in the rectus femoris of the index leg. Pearson correlations followed by multiple linear regression was used to determine associations between muscle quality and pain, controlling for strength, age, sex, and body mass index. RESULTS: EI and SWV were significantly associated with movement-evoked pain (b = 0.452-0.839, P = 0.024-0.029). Clinical pain intensity was significantly associated with SWV (b = 0.45, P = 0.034), as were pressure pain thresholds at the medial (b = -0.41, P = 0.025) and lateral (b = -0.54, P = 0.009) index knee joint line, adjusting for all covariates. Pain interference was significantly associated with knee extension strength (b = -0.51, P = 0.041). CONCLUSION: These preliminary findings suggest that EI and SWV may impact knee OA pain and could serve as malleable treatment targets. Findings also demonstrate that muscle quality is a unique construct, distinct from muscle strength, which may impact pain and treatment outcomes. More research is needed to fully understand the role of muscle quality in knee OA.
Asunto(s)
Fuerza Muscular , Osteoartritis de la Rodilla , Músculo Cuádriceps , Ultrasonografía , Humanos , Osteoartritis de la Rodilla/fisiopatología , Osteoartritis de la Rodilla/diagnóstico por imagen , Femenino , Masculino , Estudios Transversales , Persona de Mediana Edad , Fuerza Muscular/fisiología , Anciano , Músculo Cuádriceps/fisiopatología , Músculo Cuádriceps/diagnóstico por imagen , Dimensión del Dolor , Artralgia/fisiopatología , Artralgia/etiología , Articulación de la Rodilla/fisiopatología , Articulación de la Rodilla/diagnóstico por imagenRESUMEN
Introduction: Chronic musculoskeletal (MSK) pain is prevalent in older adults and confers significant risk for loss of independence and low quality of life. While obesity is considered a risk factor for developing chronic MSK pain, both high and low body mass index (BMI) have been associated with greater pain reporting in older adults. Measures of body composition that distinguish between fat mass and lean mass may help to clarify the seemingly contradictory associations between BMI and MSK pain in this at-risk group. Methods: Twenty-four older adults (mean age: 78.08 ± 5.1 years) completed dual-energy x-ray absorptiometry (DEXA), and pain measures (Graded Chronic Pain Scale, number of anatomical pain sites, pressure pain threshold, mechanical temporal summation). Pearson correlations and multiple liner regression examined associations between body mass index (BMI), body composition indices, and pain. Results: Significant positive associations were found between number of pain sites and BMI (b = 0.37) and total fat mass (b = 0.42), accounting for age and sex. Total body lean mass was associated with pressure pain sensitivity (b = 0.65), suggesting greater lean mass is associated with less mechanical pain sensitivity. Discussion: The results from this exploratory pilot study indicate lean mass may provide additional resilience to maladaptive changes in pain processing in older adults, and highlights the importance of distinguishing body composition indices from overall body mass index to better understand the complex relationship between obesity and MSK pain in older adults.
RESUMEN
Background: The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium's over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and peri-articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches. The aim of this manuscript is to elucidate the human data gathered by the RE-JOIN consortium, as well as to expound upon its underlying rationale and the methodologies and protocols for harmonization and standardization that have been instituted by the RE-JOIN Consortium. Methods: The consortium-wide human models working subgroup established the RE-JOIN minimal harmonized data elements that will be collected across all human studies and set the stage to develop parallel pre-clinical data collection standards. Data harmonization considerations included requirements from the HEAL program and recommendations from the consortium's researchers and experts on informatics, knowledge management, and data curation. Results: Multidisciplinary experts - including preclinical and clinical researchers, with both clinician-scientists- developed the RE-JOIN's Minimal Human Data Standard with required domains and outcome measures to be collected across projects and institutions. The RE-JOIN minimal data standard will include HEAL Common Data Elements (CDEs) (e.g., standardized demographics, general pain, psychosocial and functional measures), and RE-JOIN common data elements (R-CDE) (i.e., both general and joint-specific standardized and clinically important self-reported pain and function measures, as well as pressure pain thresholds part of quantitative sensory testing). In addition, discretionary, site-specific measures will be collected by individual institutions (e.g., expanded quantitative sensory testing and gait biomechanical assessments), specific to the knee or TMJ. Research teams will submit datasets of standardized metadata to the RE-JOIN Data Coordinating Center (DCG) via a secure cloud-based central data repository and computing infrastructure for researchers to share and conduct analyses on data collected by or acquired for RE-JOIN. RE-JOIN datasets will have protected health information (PHI) removed and be publicly available on the SPARC portal and accessible through the HEAL Data Ecosystem. Conclusion: Data Harmonization efforts provide the multidisciplinary consortium with an opportunity to effectively collaborate across decentralized research teams, and data standardization sets the framework for efficient future analyses of RE-JOIN data collected by the consortium. The harmonized phenotypic information obtained will significantly enhance our understanding of the neurobiology of the pain-pathology relationships in humans, providing valuable insights for comparison with pre-clinical models.
RESUMEN
Body weight significantly impacts health and quality of life, and is a leading risk factor for the development of knee osteoarthritis (OA). Weight cycling may have more negative health consequences compared to steady high or low weight. Using the Osteoarthritis Initiative dataset, we investigated the effects of weight cycling on physical function, quality of life, and depression over 72-months compared to stable or unidirectional body weight trajectories. Participants (n = 731) had knee OA and were classified as: (1) stable-low (BMI < 25), (2) stable-overweight (BMI = 25-29.9), and (3) stable-obese (BMI ≥ 30); (4) steady-weight-loss; (5) steady-weight-gain (weight loss/gain ≥ 2.2 kg every 2-years); (6) gain-loss-gain weight cycling, and (7) loss-gain-loss weight cycling (weight loss/gain with return to baseline), based on bi-annual assessments. We compared Knee Injury and Osteoarthritis Outcome Knee-Related Quality of Life, Function in Sports and Recreation, Physical Activity in the Elderly, Short Form SF-12, repeated chair rise, 20-m gait speed, and Center for Epidemiological Studies Depression using repeated-measures ANOVA. The steady weight loss group demonstrated the worst pain, physical function, and depressive symptoms over time (p's < 0.05). More research is needed to confirm these findings, and elucidate the mechanisms by which steady weight loss is associated with functional decline in knee OA.
Asunto(s)
Osteoartritis de la Rodilla , Ciclo del Peso , Humanos , Anciano , Calidad de Vida , Depresión , Dolor/etiología , Pérdida de Peso , Aumento de PesoRESUMEN
Introduction: Chronic pain is one of the leading causes of disability that may accelerate biological aging and reduce physical function. Epigenetic clocks provide an estimate of how the system ages and can predict health outcomes such as physical function. Physical function declines may be attributed to decreases in muscle quality due to disuse that can be measured quickly and noninvasively using grip strength. The purpose of this study was to explore the associations among self-reported pain, grip strength, and epigenetic aging in those with chronic pain. Methods: Participants (57.91 ± 8.04 years) completed pain questionnaires, a blood draw and hand grip strength task. We used an epigenetic clock previously associated with knee pain (DNAmGrimAge), and used the subsequent difference of predicted epigenetic age from chronological age (DNAmGrimAge-Difference). Results: Exploratory pathway analyses revealed that pain intensity mediated the association between DNAmGrimAge-difference and handgrip strength in males only (ß = -0.1115; CI [-0.2929, -0.0008]) and pain interference mediated the association between DNAmGrimAge-difference and handgrip strength in males ß = -0.1401; CI [-0.3400, -0.0222]), and females (ß = -0.024; CI [-0.2918, -0.0020]). Discussion: Chronic knee pain may accelerate epigenetic aging processes that may influence handgrip strength in older age adults. Chronic pain could be a symptom of the aging body thus contributing to declines in musculoskeletal function in later life.
RESUMEN
Chronic pain is driven by factors across the biopsychosocial spectrum. Previously, we demonstrated that magnetic resonance images (MRI)-based brain-predicted age differences (brain-PAD: brain-predicted age minus chronological age) were significantly associated with pain severity in individuals with chronic knee pain. We also previously identified four distinct, replicable, multidimensional psychological profiles significantly associated with clinical pain. The brain aging-psychological characteristics interface in persons with chronic pain promises elucidating factors contributing to their poor health outcomes, yet this relationship is barely understood. That is why we examined the interplay between the psychological profiles in participants having chronic knee pain impacting function, brain-PAD, and clinical pain severity. Controlling for demographics and MRI scanner, we compared the brain-PAD among psychological profiles at baseline (n = 164) and over two years (n = 90). We also explored whether profile-related differences in pain severity were mediated by brain-PAD. Brain-PAD differed significantly between profiles (ANOVA's omnibus test, P = .039). Specifically, participants in the profile 3 group (high negative/low positive emotions) had an average brain-PAD â¼4 years higher than those in profile- (low somatic reactivity), with P = .047, Bonferroni-corrected, and than those in profile 2 (high coping), with P = .027, uncorrected. Repeated measures ANOVA revealed no significant change in profile-related brain-PAD differences over time, but there was a significant decrease in brain-PAD for profile 4 (high optimism/high positive affect), with P = .045. Moreover, profile-related differences in pain severity at baseline were partly explained by brain-PAD differences between profile 3 and 1, or 2; but brain-PAD did not significantly mediate the influence of variations in profiles on changes in pain severity over time. PERSPECTIVE: Accelerated brain aging could underlie the psychological-pain relationship, and psychological characteristics may predispose individuals with chronic knee pain to worse health outcomes via neuropsychological processes.
RESUMEN
Knee pain, the most common cause of musculoskeletal pain (MSK), constitutes a severe public health burden. Its neurobiological causes, however, remain poorly understood. Among many possible causes, it has been proposed that sleep problems could lead to an increase in chronic pain symptomatology, which may be driven by central nervous system changes. In fact, we previously found that brain cortical thickness mediated the relationship between sleep qualities and pain severity in older adults with MSK. We also demonstrated a significant difference in a machine-learning-derived brain-aging biomarker between participants with low-and high-impact knee pain. Considering this, we examined whether brain aging was associated with self-reported sleep and pain measures, and whether brain aging mediated the relationship between sleep problems and knee pain. Exploratory Spearman and Pearson partial correlations, controlling for age, sex, race and study site, showed a significant association of brain aging with sleep related impairment and self-reported pain measures. Moreover, mediation analysis showed that brain aging significantly mediated the effect of sleep related impairment on clinical pain and physical symptoms. Our findings extend our prior work demonstrating advanced brain aging among individuals with chronic pain and the mediating role of brain-aging on the association between sleep and pain severity. Future longitudinal studies are needed to further understand whether the brain can be a therapeutic target to reverse the possible effect of sleep problems on chronic pain.
RESUMEN
ABSTRACT: Brain age predicted differences (brain-PAD: predicted brain age minus chronological age) have been reported to be significantly larger for individuals with chronic pain compared with those without. However, a debate remains after one article showed no significant differences. Using Gaussian Process Regression, an article provides evidence that these negative results might owe to the use of mixed samples by reporting a differential effect of chronic pain on brain-PAD across pain types. However, some remaining methodological issues regarding training sample size and sex-specific effects should be tackled before settling this controversy. Here, we explored differences in brain-PAD between musculoskeletal pain types and controls using a novel convolutional neural network for predicting brain-PADs, ie, DeepBrainNet. Based on a very large, multi-institutional, and heterogeneous training sample and requiring less magnetic resonance imaging preprocessing than other methods for brain age prediction, DeepBrainNet offers robust and reproducible brain-PADs, possibly highly sensitive to neuropathology. Controlling for scanner-related variability, we used a large sample (n = 660) with different scanners, ages (19-83 years), and musculoskeletal pain types (chronic low back [CBP] and osteoarthritis [OA] pain). Irrespective of sex, brain-PAD of OA pain participants was â¼3 to 4.7 years higher than that of CBP and controls, whereas brain-PAD did not significantly differ among controls and CBP. Moreover, brain-PAD was significantly related to multiple variables underlying the multidimensional pain experience. This comprehensive work adds evidence of pain type-specific effects of chronic pain on brain age. This could help in the clarification of the debate around possible relationships between brain aging mechanisms and pain.
Asunto(s)
Dolor Crónico , Dolor Musculoesquelético , Osteoartritis , Femenino , Humanos , Masculino , Envejecimiento/patología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Dolor Crónico/patología , Imagen por Resonancia Magnética/métodos , Dolor Musculoesquelético/patología , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más AñosRESUMEN
Chronic pain has been associated with changes in pain-related brain structure and function, including advanced brain aging. Non-pharmacological pain management is central to effective pain management. However, it is currently unknown how use of non-pharmacological pain management is associated with pain-related brain changes. The objective of the current study was to examine the association between brain-predicted age difference and use of non-pharmacological pain management (NPM) in a sample of middle-aged and older adults with and without chronic knee pain across two time points. One-hundred and 12 adults (mean age = 57.9 ± 8.2 years) completed sociodemographic measures, clinical pain measures, structural T1-weighted brain magnetic resonance imaging, and self-reported non-pharmacological pain management. Using a validated approach, we estimated a brain-predicted age difference (brain-PAD) biomarker, calculated as brain-predicted age minus chronological age, and the change in brain-PAD across 2 years. Repeated measures analysis of covariance was conducted to determine associations of non-pharmacological pain management and brain-PAD, adjusting for age, sex, study site, and clinical pain. There was a significant time*pain/NPM interaction effect in brain-PAD (p < 0.05). Tests of simple main effects indicated that those persistently using NPM had a "younger" brain-PAD over time, suggesting a potential protective factor in persistent NPM use. Future studies are warranted to determine the influence of NPM in brain aging and pain-related neurological changes.
RESUMEN
Context: Vitamin D is an essential, fat soluble micronutrient long-known for its effects on calcium homeostasis and bone health. With advances in technology, it is being discovered that Vitamin D exerts its effects beyond the musculoskeletal system. Vitamin D has since been noted in nervous system health and functioning, and is becoming a target of interest in brain health, aging, and chronic pain outcomes. Objectives: We and others have previously shown that deficient Vitamin D status is associated with greater pain severity across a variety of conditions, however the reason as to why this relationship exists is still being understood. Here, we sought to examine associations between Vitamin D status and brain structure in those with chronic knee pain. Methods: Structural MRI imaging techniques and whole brain analyses were employed and serum Vitamin D were collected on 140 participants with chronic pain. Covariates included age, sex, race and site, as these data were collected at two separate institutions. ANOVAs using the clinical cut points for Vitamin D status (deficient, insufficient, and optimal) as well as continuous regression-based Vitamin D effects were employed to observe differences in brain volume. P-value was set to 0.017 after correction for multiple comparisons. Results: We discovered that individuals in our sample (age = 50+; 63.6% female; 52.1% Non-Hispanic Black) who were either clinically deficient (<20 ng/mL) or insufficient (20-30 ng/mL) in serum Vitamin D had significant differences in the gray matter of the left circular insular cortex, left inferior temporal gyrus, right middle temporal gyrus, as well as decreased white matter surface area in the right inferior temporal gyrus compared to those considered to have optimal levels (>30 ng/mL) of serum Vitamin D. Conclusion: Evidence from these data suggests that Vitamin D, or lack thereof, may be associated with pain outcomes by mediating changes in regions of the brain known to process and interpret pain. More research understanding this phenomenon as well as the effects of Vitamin D supplementation is warranted.
RESUMEN
Knee pain is a leading cause of disability in the aging population and may indirectly accelerate biological aging processes. Chronological aging increases the risk of developing of knee pain and knee pain reduces physical function; however, limited data exist on how epigenetic aging, a known hallmark of biological aging shown to predict health span and mortality, may influence this relationship. The purpose of this study was to examine whether decreased physical performance associated with knee pain is mediated by markers of epigenetic aging. Participants (57.91 ± 8.04 years) with low impact knee pain (n = 95), high impact knee pain (n = 53) and pain-free controls (n = 26) completed self-reported pain, a blood draw and a short physical performance battery (SPPB) that included balance, walking, and sit to stand tasks. We employed an epigenetic clock previously associated with knee pain and shown to predict overall mortality risk (DNAmGrimAge). Bootstrapped-mediation analyses were used to determine associations of DNAmGrimAge and SPPB between pain groups. Those with high impact and low impact pain had a biologically older epigenetic age (5.14y ± 5.66 and 1.32y ± 5.41, respectively). However, while there were direct effects of pain on overall physical performance, these were not explained by epigenetic aging. Epigenetic aging only mediated the effect of pain on balance performance. Future work is needed to examine pain's impact on biological aging processes including epigenetic aging and its ultimate effect on physical function measures known to predict health span and mortality.
Asunto(s)
Vida Independiente , Rendimiento Físico Funcional , Anciano , Envejecimiento/genética , Epigénesis Genética , Humanos , Dolor/etiologíaRESUMEN
Dispositional traits can be protective or contribute to increased vulnerability in individuals with chronic pain. This study aims to evaluate the association between two dispositional trait measures, affect balance style and multi-domain trait groups, with psychosocial measures, clinical pain, functional pain, and experimental pain at two years in individuals with chronic knee pain. The study is a prospective analysis of 168 community dwelling individuals aged 45 to 85 years old with knee pain with or at risk for knee osteoarthritis. At baseline, affect balance style and multi-domain trait groups were associated with psychosocial measures, clinical pain, and functional status. At the two-year time point, the multi-domain trait groups were associated with the clinical pain measures. Interestingly, individuals with previously demonstrated vulnerable traits showed more variability in dispositional trait status at the two-year time point compared to those with dispositional traits previously demonstrated as more protective. Findings reiterate that dispositional traits are predisposing but are not predetermining regarding pain-related experiences. PERSPECTIVE: Vulnerable and protective dispositional traits are positively and negatively associated with clinical pain and functional limitations respectively. Although considered relatively stable, a 30-50% shift in dispositional traits was indicated over a two-year period. Findings highlight that dispositional trait are modifiable and thus, predisposing but not predetermining for persisting chronic pain.
Asunto(s)
Dolor Crónico , Osteoartritis de la Rodilla , Anciano , Anciano de 80 o más Años , Dolor Crónico/psicología , Humanos , Persona de Mediana Edad , PersonalidadRESUMEN
OBJECTIVES: Pain sensitivity and the brain structure are critical in modulating pain and may contribute to the maintenance of pain in older adults. However, a paucity of evidence exists investigating the link between pain sensitivity and brain morphometry in older adults. The purpose of the study was to identify pain sensitivity profiles in healthy, community-dwelling older adults using a multimodal quantitative sensory testing protocol and to differentiate profiles based on brain morphometry. MATERIALS AND METHODS: This study was a secondary analysis of the Neuromodulatory Examination of Pain and Mobility Across the Lifespan (NEPAL) study. Participants completed demographic and psychological questionnaires, quantitative sensory testing, and a neuroimaging session. A Principal Component Analysis with Varimax rotation followed by hierarchical cluster analysis identified 4 pain sensitivity clusters (the "pain clusters"). RESULTS: Sixty-two older adults ranging from 60 to 94 years old without a specific pain condition (mean [SD] age=71.44 [6.69] y, 66.1% female) were analyzed. Four pain clusters were identified characterized by (1) thermal pain insensitivity; (2) high pinprick pain ratings and pressure pain insensitivity; (3) high thermal pain ratings and high temporal summation; and (4) thermal pain sensitivity, low thermal pain ratings, and low mechanical temporal summation. Sex differences were observed between pain clusters. Pain clusters 2 and 4 were distinguished by differences in the brain cortical volume in the parieto-occipital region. DISCUSSION: While sufficient evidence exists demonstrating pain sensitivity profiles in younger individuals and in those with chronic pain conditions, the finding that subgroups of experimental pain sensitivity also exist in healthy older adults is novel. Identifying these factors in older adults may help differentiate the underlying mechanisms contributing to pain and aging.
Asunto(s)
Dolor Crónico , Vida Independiente , Anciano , Enfermedad Crónica , Dolor Crónico/psicología , Femenino , Humanos , Masculino , Dimensión del Dolor/métodos , Umbral del Dolor/psicología , FenotipoRESUMEN
Disparities in the experience of chronic musculoskeletal pain in the United States stem from a confluence of a broad array of factors. Organized within the National Institute on Aging Health Disparity Research Framework, a literature review was completed to evaluate what is known and what is needed to move chronic musculoskeletal pain research forward specific to disproportionately affected populations. Peer-reviewed studies published in English, on human adults, from 2000 to 2019, and conducted in the United States were extracted from PubMed and Web of Science. Articles were reviewed for key words that focused on underrepresented ethnic/race groups with chronic musculoskeletal pain applying health factor terms identified in the NIAHealth Disparity Research Framework four levels of analysis: 1) environmental, 2) sociocultural, 3) behavioral, and 4) biological. A total of 52 articles met inclusion criteria. There were limited publications specific to underrepresented ethnic/race groups with chronic musculoskeletal pain across all levels with particular research gaps under sociocultural and biological categories. Current limitations in evidence may be supplemented by a foundation of findings specific to the broader topic of "chronic pain" which provides guidance for future investigations. Study designs including a focus on protective factors and multiple levels of analyses would be particularly meritorious. PERSPECTIVE: Chronic musculoskeletal pain unequally burdens underrepresented ethnic/race groups. In order to move research forward and to systematically investigate the complex array of factors contributing toward health disparities, an organized approach is necessary. Applying the NIA Health Disparities Research Framework, an overview of the current state of evidence specific to chronic musculoskeletal pain and underrepresented ethnic/race groups is provided with future directions identified.
Asunto(s)
Investigación Biomédica , Dolor Crónico/etnología , Minorías Étnicas y Raciales , Disparidades en el Estado de Salud , Dolor Musculoesquelético/etnología , Humanos , National Institute on Aging (U.S.) , Estados Unidos/etnologíaRESUMEN
Purpose: Knee OA-related pain varies in impact across individuals and may relate to central nervous system alterations like accelerated brain aging processes. We previously reported that older adults with chronic musculoskeletal pain had a significantly greater brain-predicted age, compared to pain-free controls, indicating an "older" appearing brain. Yet this association is not well understood. This cross-sectional study examines brain-predicted age differences associated with chronic knee osteoarthritis pain, in a larger, more demographically diverse sample with consideration for pain's impact. Patients and Methods: Participants (mean age = 57.8 ± 8.0 years) with/without knee OA-related pain were classified according to pain's impact on daily function (ie, impact): low-impact (n=111), and high-impact (n=60) pain, and pain-free controls (n=31). Participants completed demographic, pain, and psychosocial assessments, and T1-weighted magnetic resonance imaging. Brain-predicted age difference (brain-PAD) was compared across groups using analysis of covariance. Partial correlations examined associations of brain-PAD with pain and psychosocial variables. Results: Individuals with high-impact chronic knee pain had significantly "older" brains for their age compared to individuals with low-impact knee pain (p < 0.05). Brain-PAD was also significantly associated with clinical pain, negative affect, passive coping, and pain catastrophizing (p's<0.05). Conclusion: Our findings suggest that high impact chronic knee pain is associated with an older appearing brain on MRI. Future studies are needed to determine the impact of pain-related interference and pain management on somatosensory processing and brain aging biomarkers for high-risk populations and effective intervention strategies.
RESUMEN
Osteoarthritis (OA) is a highly prevalent musculoskeletal condition worldwide. More than 300 million individuals are affected by OA, and pain is the most common and challenging symptom to manage. Although many new advances have led to improved OA-related pain management, smart technology offers additional opportunities to enhance symptom management. This narrative review identifies and describes the current literature focused on smart technology for pain management in individuals with OA. In collaboration with a health sciences librarian, an interdisciplinary team of clinician-scientists searched multiple databases (e.g. PubMed, CINAHL and Embase), which generated 394 citations for review. After inclusion criteria were met, data were extracted from eight studies reporting on varied smart technologies, including mobile health, wearables and eHealth tools to measure or manage pain. Our review highlights the dearth of research in this crucial area, the implications for clinical practice and technology development, and future research needs.
RESUMEN
INTRODUCTION: Psychological factors have been associated with knee osteoarthritis pain severity and treatment outcomes, yet their combined contribution to phenotypic heterogeneity is poorly understood. In particular, empirically derived psychological profiles must be replicated before they can be targeted or considered for treatment studies. The objectives of this study were to (1) confirm previously identified psychological profiles using unsupervised clustering methods in persons with knee osteoarthritis pain, (2) determine the replicability of profiles using supervised machine learning in a different sample, and (3) examine associations with clinical pain, brain structure, and experimental pain. METHODS: Participants included two cohorts of individuals with knee osteoarthritis pain recruited as part of the multisite UPLOAD1 (n = 270, mean age = 56.8 ± 7.6, male = 37%) and UPLOAD2 (n = 164, mean age = 57.73 ± 7.8, male = 36%) studies. Similar psychological constructs (e.g. optimism, coping, somatization, affect, depression, and anxiety), sociodemographic and clinical characteristics, and somatosensory function were assessed across samples. UPLOAD2 participants also completed brain magnetic resonance imaging. Unsupervised hierarchical clustering analysis was first conducted in UPLOAD1 data to derive clusters, followed by supervised linear discriminative analysis to predict group membership in UPLOAD2 data. Associations among cluster membership and clinical variables were assessed, controlling for age, sex, education, ethnicity/race, study site, and number of pain sites. RESULTS: Four distinct profiles emerged in UPLOAD1 and were replicated in UPLOAD2. Identified psychological profiles were associated with psychological variables (ps < 0.001), and clinical outcomes (ps = 0.001-0.03), indicating good internal and external validation of the cluster solution. Significant associations between psychological profiles and somatosensory function and brain structure were also found. CONCLUSIONS: This study highlights the importance of considering the biopsychosocial model in knee osteoarthritis pain assessment and treatment.