Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mov Disord ; 39(1): 192-197, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37888906

RESUMEN

BACKGROUND: Excessive subthalamic nucleus (STN) ß-band (13-35 Hz) synchronized oscillations has garnered interest as a biomarker for characterizing disease state and developing adaptive stimulation systems for Parkinson's disease (PD). OBJECTIVES: To report on a patient with abnormal treatment-responsive modulation in the ß-band. METHODS: We examined STN local field potentials from an externalized deep brain stimulation (DBS) lead while assessing PD motor signs in four conditions (OFF, MEDS, DBS, and MEDS+DBS). RESULTS: The patient presented here exhibited a paradoxical increase in ß power following administration of levodopa and pramipexole (MEDS), but an attenuation in ß power during DBS and MEDS+DBS despite clinical improvement of 50% or greater under all three therapeutic conditions. CONCLUSIONS: This case highlights the need for further study on the role of ß oscillations in the pathophysiology of PD and the importance of personalized approaches to the development of ß or other biomarker-based DBS closed loop algorithms. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Núcleo Subtalámico/fisiología , Levodopa/uso terapéutico , Biomarcadores
2.
Clin J Sport Med ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38917297

RESUMEN

OBJECTIVES: This study explored the link between early sports specialization and injury rates in youth divers, a relationship that remains largely unexplored within diving. DESIGN: Cross-sectional survey. SETTING: Members of the USA Diving Organization and collegiate male and female divers participated in an online survey, reporting their sports involvement and injury history. PARTICIPANTS: One hundred eighty-two male and female divers aged 8 to 25 years were recruited through USA Diving or US collegiate team databases. INDEPENDENT VARIABLES: Early/late specialization (based on age <12 or 12 years or older), gender (M/F), springboard and/or platform divers, experience (junior/senior, regional/zone/national/international), hours of dryland/water training, and prior sport exposure. MAIN OUTCOME MEASURES: Injury history obtained on questionnaire. RESULTS: One hundred eighty-two divers were surveyed; 70% female. Age to start diving and age to concentrate solely on diving were significantly associated with certain injuries (P < 0.05). Beginning diving before age 13 years of age was significantly associated with lower odds of injuries in the shoulder and wrist (P = 0.013 and 0.018, respectively), after adjusting for select covariates. Age of specialization was not significantly associated with injuries in any body part (P > 0.05), after adjusting for covariates. Greater years of diving experience was significantly associated with diving injuries in all 11 body parts (P < 0.05). CONCLUSIONS: This study indicates that early sports specialization is associated with decreased injury rates in elite youth divers who specialized before age 13 years, particularly for head/neck, shoulder, and wrist injuries. Moreover, we observed a positive correlation between experience and injury rate. Further investigation should focus on distinguishing between acute and overuse injuries.

3.
Neurobiol Dis ; 176: 105963, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36521781

RESUMEN

Excessive daytime sleepiness is a recognized non-motor symptom that adversely impacts the quality of life of people with Parkinson's disease (PD), yet effective treatment options remain limited. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for PD motor signs. Reliable daytime sleep-wake classification using local field potentials (LFPs) recorded from DBS leads implanted in STN can inform the development of closed-loop DBS approaches for prompt detection and disruption of sleep-related neural oscillations. We performed STN DBS lead recordings in three nonhuman primates rendered parkinsonian by administrating neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Reference sleep-wake states were determined on a second-by-second basis by video monitoring of eyes (eyes-open, wake and eyes-closed, sleep). The spectral power in delta (1-4 Hz), theta (4-8 Hz), low-beta (8-20 Hz), high-beta (20-35 Hz), gamma (35-90 Hz), and high-frequency (200-400 Hz) bands were extracted from each wake and sleep epochs for training (70% data) and testing (30% data) a support vector machines classifier for each subject independently. The spectral features yielded reasonable daytime sleep-wake classification (sensitivity: 90.68 ± 1.28; specificity: 88.16 ± 1.08; accuracy: 89.42 ± 0.68; positive predictive value; 88.70 ± 0.89, n = 3). Our findings support the plausibility of monitoring daytime sleep-wake states using DBS lead recordings. These results could have future clinical implications in informing the development of closed-loop DBS approaches for automatic detection and disruption of sleep-related neural oscillations in people with PD to promote wakefulness.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Núcleo Subtalámico/fisiología , Sueño/fisiología , Enfermedad de Parkinson/terapia
4.
Cereb Cortex ; 32(20): 4619-4639, 2022 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-35149865

RESUMEN

Adolescence constitutes a period of vulnerability in the emergence of fear-related disorders (FRD), as a massive reorganization occurs in the amygdala-prefrontal cortex network, critical to regulate fear behavior. Genetic and environmental factors during development may predispose to the emergence of FRD at the adult age, but the underlying mechanisms are poorly understood. In the present study, we tested whether a partial knock-down of tuberous sclerosis complex 2 (Tsc2, Tuberin), a risk gene for neurodevelopmental disorders, in the basolateral amygdala (BLA) from adolescence could alter fear-network functionality and create a vulnerability ground to FRD appearance at adulthood. Using bilateral injection of a lentiviral vector expressing a miRNA against Tsc2 in the BLA of early (PN25) or late adolescent (PN50) rats, we show that alteration induced specifically from PN25 resulted in an increased c-Fos activity at adulthood in specific layers of the prelimbic cortex, a resistance to fear extinction and an overgeneralization of fear to a safe, novel stimulus. A developmental dysfunction of the amygdala could thus play a role in the vulnerability to FRD emergence at adulthood. We propose our methodology as an alternative to model the developmental vulnerability to FRD, especially in its comorbidity with TSC2-related autism syndrome.


Asunto(s)
MicroARNs , Proteína 2 del Complejo de la Esclerosis Tuberosa/metabolismo , Esclerosis Tuberosa , Amígdala del Cerebelo , Animales , Extinción Psicológica/fisiología , Miedo/fisiología , Corteza Prefrontal/fisiología , Ratas , Proteína 2 del Complejo de la Esclerosis Tuberosa/genética
5.
J Neurosci ; 41(10): 2274-2286, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33483430

RESUMEN

Elevated synchronized oscillatory activity in the beta band has been hypothesized to be a pathophysiological marker of Parkinson's disease (PD). Recent studies have suggested that parkinsonism is closely associated with increased amplitude and duration of beta burst activity in the subthalamic nucleus (STN). How beta burst dynamics are altered from the normal to parkinsonian state across the basal ganglia-thalamocortical (BGTC) motor network, however, remains unclear. In this study, we simultaneously recorded local field potential activity from the STN, internal segment of the globus pallidus (GPi), and primary motor cortex (M1) in three female rhesus macaques, and characterized how beta burst activity changed as the animals transitioned from normal to progressively more severe parkinsonian states. Parkinsonism was associated with an increased incidence of beta bursts with longer duration and higher amplitude in the low beta band (8-20 Hz) in both the STN and GPi, but not in M1. We observed greater concurrence of beta burst activity, however, across all recording sites (M1, STN, and GPi) in PD. The simultaneous presence of low beta burst activity across multiple nodes of the BGTC network that increased with severity of PD motor signs provides compelling evidence in support of the hypothesis that low beta synchronized oscillations play a significant role in the underlying pathophysiology of PD. Given its immersion throughout the motor circuit, we hypothesize that this elevated beta-band activity interferes with spatial-temporal processing of information flow in the BGTC network that contributes to the impairment of motor function in PD.SIGNIFICANCE STATEMENT This study fills a knowledge gap regarding the change in temporal dynamics and coupling of beta burst activity across the basal ganglia-thalamocortical (BGTC) network during the evolution from normal to progressively more severe parkinsonian states. We observed that changes in beta oscillatory activity occur throughout BGTC and that increasing severity of parkinsonism was associated with a higher incidence of longer duration, higher amplitude low beta bursts in the basal ganglia, and increased concurrence of beta bursts across the subthalamic nucleus, globus pallidus, and motor cortex. These data provide new insights into the potential role of changes in the temporal dynamics of low beta activity within the BGTC network in the pathogenesis of Parkinson's disease.


Asunto(s)
Ganglios Basales/fisiopatología , Corteza Motora/fisiopatología , Red Nerviosa/fisiopatología , Trastornos Parkinsonianos/fisiopatología , Animales , Femenino , Macaca mulatta
6.
J Med Virol ; 94(10): 4792-4802, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35698816

RESUMEN

BACKGROUND: Accurate diagnosis of coronavirus disease 2019 is essential to limiting transmission within healthcare settings. The aim of this study was to identify patient demographic and clinical characteristics that could impact the clinical sensitivity of the nasopharyngeal severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) reverse transcription polymerase chain reaction (RT-PCR) test. METHODS: We conducted a retrospective, matched case-control study of patients who underwent repeated nasopharyngeal SARS-CoV2 RT-PCR testing at a tertiary care academic medical center between March 1 and July 23, 2020. The primary endpoint was conversion from negative to positive PCR status within 14 days. We conducted conditional logistic regression modeling to assess the associations between demographic and clinical features and conversion to test positivity. RESULTS: Of 51,116 patients with conclusive SARS-CoV2 nasopharyngeal RT-PCR results, 97 patients converted from negative to positive within 14 days. We matched those patients 1:2 to 194 controls by initial test date. In multivariate analysis, clinical suspicion for a respiratory infection (adjusted odds ratio [aOR] 20.9, 95% confidence interval [CI]: 3.1-141.2) and lack of pulmonary imaging (aOR 4.7, 95% CI: 1.03-21.8) were associated with conversion, while a lower burden of comorbidities trended toward an increased odds of conversion (aOR 2.2, 95% CI: 0.9-5.3). CONCLUSIONS: Symptoms consistent with a respiratory infection, especially in relatively healthy individuals, should raise concerns about a clinical false-negative result. We have identified several characteristics that should be considered when creating institutional infection prevention guidelines in the absence of more definitive data and should be included in future studies.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Prueba de COVID-19 , Estudios de Casos y Controles , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral , Estudios Retrospectivos , SARS-CoV-2/genética
7.
Opt Express ; 30(26): 46944-46955, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558633

RESUMEN

Stimulated Raman scattering is ubiquitous in many high-intensity laser environments. Parametric four-wave mixing between the pump and Raman sidebands can affect the Raman gain, but stringent phase matching requirements and strongly nonlinear dynamics obscure clear understanding of its effects at high laser powers. Here we investigate four-wave mixing in the presence of strong self-focusing and weak ionization at laser powers above the Kerr critical power. Theoretical analysis shows that the plasma generated at focus naturally leads to phase matching conditions suitable for enhanced Raman gain, almost without regard to the initial phase mismatch. Multidimensional nonlinear optical simulations with multiphoton and collisional ionization confirm the enhancement and suggest that it may lead to significantly higher Raman losses in some high-intensity laser environments.

8.
Chem Senses ; 472022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35997758

RESUMEN

The brain forms robust associations between odors and emotionally salient memories, making odors especially effective at triggering fearful or traumatic memories. Using Pavlovian olfactory fear conditioning (OFC), a variant of the traditional tone-shock paradigm, this study explored the changes involved in its processing. We assessed the expression of neuronal plasticity markers phosphorylated cyclic adenosine monophosphate response element binding protein (pCREB) and phosphorylated mitogen-activated protein kinase (pMAPK) 24 h and 14 days following OFC, in newborn neurons (EdU+) and in brain regions associated with olfactory memory processing; the olfactory bulb, piriform cortex, amygdale, and hippocampus. Here, we show that all proliferating neurons in the dentate gyrus of the hippocampus and glomerular layer of the olfactory bulb were colocalized with pCREB at 24 h and 14 days post-conditioning, and the number of proliferating neurons at both time points were statistically similar. This suggests the occurrence of long-term potentiation within the neurons of this pathway. Finally, OFC significantly increased the density of pCREB- and pMAPK-positive immunoreactive neurons in the medial and cortical subnuclei of the amygdala and the posterior piriform cortex, suggesting their key involvement in its processing. Together, our investigation identifies changes in neuroplasticity within critical neural circuits responsible for olfactory fear memory.


Asunto(s)
Corteza Piriforme , Amígdala del Cerebelo/metabolismo , Proliferación Celular , Miedo/fisiología , Humanos , Recién Nacido , Corteza Piriforme/fisiología , Olfato/fisiología
9.
Proc Natl Acad Sci U S A ; 116(52): 26259-26265, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31871164

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder affecting over 10 million people worldwide. In the 1930s and 1940s there was little understanding regarding what caused PD or how to treat it. In a desperate attempt to improve patients' lives different regions of the neuraxis were ablated. Morbidity and mortality were common, but some patients' motor signs improved with lesions involving the basal ganglia or thalamus. With the discovery of l-dopa the advent of medical therapy began and surgical approaches became less frequent. It soon became apparent, however, that medical therapy was associated with side effects in the form of drug-induced dyskinesia and motor fluctuations and surgical therapies reemerged. Fortunately, during this time studies in monkeys had begun to lay the groundwork to understand the functional organization of the basal ganglia, and with the discovery of the neurotoxin MPTP a monkey model of PD had been developed. Using this model scientists were characterizing the physiological changes that occurred in the basal ganglia in PD and models of basal ganglia function and dysfunction were proposed. This work provided the rationale for the return of pallidotomy, and subsequently deep brain stimulation procedures. In this paper we describe the evolution of these monkey studies, how they provided a greater understanding of the pathophysiology underlying the development of PD and provided the rationale for surgical procedures, the search to understand mechanisms of DBS, and how these studies have been instrumental in understanding PD and advancing the development of surgical therapies for its treatment.

10.
Neuromodulation ; 25(6): 925-934, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34435731

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the pedunculopontine nucleus (PPN) has been reported to improve gait disturbances in Parkinson's disease (PD); however, there are controversies on the radiological and electrophysiological techniques for intraoperative and postoperative confirmation of the target and determination of optimal stimulation parameters. OBJECTIVES: We investigated the correlation between the location of the estimated PPN (ePPN) and neuronal activity collected during intraoperative electrophysiological mapping to evaluate the role of microelectrode recording (MER) in identifying the effective stimulation site in two PD patients. MATERIALS AND METHODS: Bilateral PPN DBS was performed in two patients who had suffered from levodopa refractory gait disturbance. They had been implanted previously with DBS in the internal globus pallidus and the subthalamic nucleus, respectively. The PPN was determined on MRI and identified by intraoperative MER. Neuronal activity recorded was analyzed for mean discharge rate, bursting, and oscillatory activity. The effects were assessed by clinical ratings for motor signs before and after surgery. RESULTS: The PPN location was detected by MER. Groups of neurons characterized by tonic discharges were found 9-10 mm below the thalamus. The mean discharge rate in the ePPN was 19.1 ± 15.1 Hz, and 33% of the neurons of the ePPN responded with increased discharge rate during passive manipulation of the limbs and orofacial structures. PPN DBS with bipolar stimulation at a frequency range 10-30 Hz improved gait disturbances in both patients. Although PPN DBS provided therapeutic effects post-surgery in both cases, the effects waned after a year in case 1 and three years in case 2. CONCLUSIONS: Estimation of stimulation site within the PPN is possible by combining physiological guidance using MER and MRI findings. The PPN is a potential target for gait disturbances, although the efficacy of PPN DBS may depend on the location of the electrode and the stimulation parameters.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Tegmental Pedunculopontino , Núcleo Subtalámico , Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiología , Humanos , Microelectrodos , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Núcleo Tegmental Pedunculopontino/fisiología , Núcleo Subtalámico/diagnóstico por imagen
11.
J Neurosci ; 40(10): 2166-2177, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019827

RESUMEN

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and globus pallidus internus (GPi) is an effective treatment for parkinsonian motor signs. Though its therapeutic mechanisms remain unclear, it has been suggested that antidromic activation of the primary motor cortex (M1) plays a significant role in mediating its therapeutic effects. This study tested the hypothesis that antidromic activation of M1 is a prominent feature underlying the therapeutic effect of STN and GPi DBS. Single-unit activity in M1 was recorded using high-density microelectrode arrays in two parkinsonian nonhuman primates each implanted with DBS leads targeting the STN and GPi. Stimulation in each DBS target had similar therapeutic effects, however, antidromic activation of M1 was only observed during STN DBS. Although both animals undergoing STN DBS had similar beneficial effects, the proportion of antidromic-classified cells in each differed, 30 versus 6%. Over 4 h of continuous STN DBS, antidromic activation became less robust, whereas therapeutic benefits were maintained. Although antidromic activation waned over time, synchronization of spontaneous spiking in M1 was significantly reduced throughout the 4 h. Although we cannot discount the potential therapeutic role of antidromic M1 activation at least in the acute phase of STN DBS, the difference in observed antidromic activation between animals, and target sites, raise questions about its hypothesized role as the primary mechanism underlying the therapeutic effect of DBS. These results lend further support that reductions in synchronization at the level of M1 are an important factor in the therapeutic effects of DBS.SIGNIFICANCE STATEMENT Recently there has been great interest and debate regarding the potential role of motor cortical activation in the therapeutic mechanisms of deep brain stimulation (DBS) for Parkinson's disease. In this study we used chronically implanted high density microelectrode arrays in primary motor cortex (M1) to record neuronal population responses in parkinsonian nonhuman primates during subthalamic nucleus (STN) DBS and globus pallidus internus (GPi) DBS. Our results suggest a contribution of antidromic activation of M1 during STN DBS in disrupting synchronization in cortical neuronal populations; however, diminishing antidromic activity over time, and differences in observed antidromic activation between animals and target sites with antidromic activation not observed during GPi DBS, raise questions about its role as the primary mechanism underlying the therapeutic effect of DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiología , Corteza Motora/fisiología , Trastornos Parkinsonianos , Núcleo Subtalámico/fisiología , Animales , Femenino , Macaca mulatta
12.
Mov Disord ; 36(6): 1332-1341, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33847406

RESUMEN

BACKGROUND: Abnormal oscillatory neural activity in the beta-frequency band (13-35 Hz) is thought to play a role in Parkinson's disease (PD); however, increasing evidence points to alterations in high-frequency ranges (>100 Hz) also having pathophysiological relevance. OBJECTIVES: Studies have found that power in subthalamic nucleus (STN) high-frequency oscillations is increased with dopaminergic medication and during voluntary movements, implicating these brain rhythms in normal basal ganglia function. The objective of this study was to investigate whether similar signaling occurs in the internal globus pallidus (GPi), a nucleus increasingly used as a target for deep brain stimulation (DBS) for PD. METHODS: Spontaneous and movement-related GPi field potentials were recorded from DBS leads in 5 externalized PD patients on and off dopaminergic medication, as well as from 3 rhesus monkeys before and after the induction of parkinsonism with the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. RESULTS: In the parkinsonian condition, we identified a prominent oscillatory peak centered at 200-300 Hz that increased during movement. In patients the magnitude of high-frequency oscillation modulation was negatively correlated with bradykinesia. In monkeys, high-frequency oscillations were mostly absent in the naive condition but emerged after the neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine. In patients, spontaneous high-frequency oscillations were significantly attenuated on-medication. CONCLUSIONS: Our findings provide evidence in support of the hypothesis that exaggerated, movement-modulated high-frequency oscillations in the GPi are pathophysiological features of PD. These findings suggest that the functional role(s) of high-frequency oscillations may differ between the STN and GPi and motivate additional investigations into their relationship to motor control in normal and diseased states.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Biomarcadores , Globo Pálido , Humanos , Enfermedad de Parkinson/terapia
13.
World J Surg Oncol ; 19(1): 37, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33530997

RESUMEN

BACKGROUND: Denosumab (XgevaTM) is a fully human antibody to RANK-Ligand, an important signal mediator in the pathogenesis of giant cell tumour of bone (GCTB). The use of denosumab in the treatment of GCTB has changed the way in which these tumours are managed over the past years. CASE PRESENTATION: Described is the case of an acute fracture through a GCTB of the distal radius of a fit and well 32-year-old, non-smoking, female patient following a simple fall onto her outstretched, dominant hand. The aim was to enable joint sparing management for the patient, as opposed to an acute fusion procedure of the carpus. The patient underwent percutaneous k-wire fixation with application of plaster and immediate commencement with denosumab to halt the activity of the GCTB. Bone healing was rapid; plaster and k-wires were removed after 6 weeks. At 6 months denosumab, was ceased and an open curettage and grafting procedure of the tumour bed was undertaken (using MIIG X3, Wright Medical, aqueous calcium sulphate as graft material). CONCLUSIONS: The use of denosumab in the acute setting of pathological fracture through giant cell tumour of bone allowing joint salvage has not been previously described. The treatment was well tolerated and functional outcomes are excellent, with very promising 4-year follow-up. This novel approach may allow for more joint sparing strategies in the future for other patients in this difficult situation. Further cases will need to be gathered to establish this technique as a suitable treatment pathway.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias Óseas , Fracturas Espontáneas , Tumor Óseo de Células Gigantes , Adulto , Conservadores de la Densidad Ósea/uso terapéutico , Neoplasias Óseas/tratamiento farmacológico , Denosumab/uso terapéutico , Femenino , Fracturas Espontáneas/tratamiento farmacológico , Fracturas Espontáneas/etiología , Tumor Óseo de Células Gigantes/tratamiento farmacológico , Humanos , Recurrencia Local de Neoplasia , Pronóstico
14.
Neurobiol Dis ; 139: 104819, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32088379

RESUMEN

The goal of this study was to characterize the spectral characteristics and spatial topography of local field potential (LFP) activity in the internal segment of the globus pallidus (GPi) in patients with Parkinson's disease utilizing directional (segmented) deep brain stimulation (dDBS) leads. Data were collected from externalized dDBS leads of three patients with idiopathic Parkinson's disease after overnight withdrawal of parkinsonian medication at rest and during a cued reach-to-target task. Oscillatory activity across lead contacts/segments was examined in the context of lead locations and contact orientations determined using co-registered preoperative 7 Tesla (T) MRI and postoperative CT scans. Each of the three patients displayed a unique frequency spectrum of oscillatory activity in the pallidum, with prominent peaks ranging from 5 to 35 Hz, that modulated variably across subjects during volitional movement. Despite subject-specific spectral profiles, a consistent finding across patients was that oscillatory power was strongest and had the largest magnitude of modulation during movement in LFPs recorded from segments facing the postero-lateral "sensorimotor" region of GPi, whereas antero-medially-directed segmented contacts facing the internal capsule and/or anterior GPi, had relatively weaker LFP power and less modulation in the 5 to 35 Hz. In each subject, contact configurations chosen for clinically therapeutic stimulation (following data collection and blinded to physiology recordings), were in concordance with the contact pairs showing the largest amplitude of LFP oscillations in the 5-35 Hz range. Although limited to three subjects, these findings provide support for the hypothesis that the sensorimotor territory of the GPi corresponds to the site of maximal power of oscillatory activity in the 5 to 35 Hz and provides the greatest benefit in motor signs during stimulation in the GPi. Variability in oscillatory activity across patients is likely related to Parkinson's disease phenotype as well as small differences in recording location (i.e. lead location), highlighting the importance of lead location for optimizing stimulation efficacy. These data also provide compelling evidence for the use of LFP activity for the development of predictive stimulation models that may optimize patient benefits while reducing clinic time needed for programming.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Globo Pálido/fisiopatología , Enfermedad de Parkinson/terapia , Potenciales de Acción/fisiología , Ritmo beta/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología
15.
Neurobiol Learn Mem ; 174: 107285, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32745600

RESUMEN

Research has shown that a single presentation of the conditioned stimulus prior to extinction training can diminish conditioned responses. However, replication has proven difficult and appears to be limited by boundary conditions. Here we tested the boundary condition of memory strength by comparing the effect of reinforcement rate to assess its role in post-retrieval extinction. Eighty university students had undergone a three-day fear conditioning experiment in which two partial reinforcement schedules (40%, 80%) were applied. The findings indicated that both low and high partial reinforcement groups did not demonstrate recovery of conditioned responses after post-retrieval extinction. In contrast, both groups demonstrated significant recovery to standard extinction with significantly greater recovery in the 80% group relative to the 40% group. Additionally, we found that greater physiological arousal during memory retrieval significantly predicted recovery of fear at test phase. We conclude that when compared to a lower partial reinforcement schedule, a higher partial reinforcement resulted in the formation of a stronger memory as indicated by greater physiological arousal during memory reactivation and recovery of conditioned responses after standard extinction, but that it does not function as a boundary condition of post-retrieval extinction. These data are significant because it is the first study to investigate the effect of varying partial reinforcement schedules on fear recovery and add to the body of literature that continue to identify sources of failure in the application of post-retrieval extinction.


Asunto(s)
Extinción Psicológica , Recuerdo Mental , Refuerzo en Psicología , Adolescente , Adulto , Condicionamiento Clásico , Electrochoque , Femenino , Respuesta Galvánica de la Piel , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
16.
Opt Lett ; 45(15): 4344-4347, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32735294

RESUMEN

Meter-scale nonlinear propagation of a picosecond ultraviolet laser beam in water, sufficiently intense to cause stimulated Raman scattering (SRS), nonlinear focusing, pump-Stokes nonlinear coupling, and photoexcitation, was characterized in experiments and simulations. Pump and SRS Stokes pulse energies were measured, and pump beam profiles were imaged at propagation distances up to 100 cm for a range of laser power below and above self-focusing critical power. Simulations with conduction band excitation energy UCB=9.5eV, effective electron mass meff=0.2me, Kerr nonlinear refractive index n2=5×10-16cm2/W, and index contribution due to SRS susceptibility n2r=1.7×10-16cm2/W produced the best agreement with experimental data.

17.
Angew Chem Int Ed Engl ; 59(22): 8486-8490, 2020 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32103574

RESUMEN

Non-natural terpenoids offer potential as pharmaceuticals and agrochemicals. However, their chemical syntheses are often long, complex, and not easily amenable to large-scale production. Herein, we report a modular chemoenzymatic approach to synthesize terpene analogues from diphosphorylated precursors produced in quantitative yields. Through the addition of prenyl transferases, farnesyl diphosphates, (2E,6E)-FDP and (2Z,6Z)-FDP, were isolated in greater than 80 % yields. The synthesis of 14,15-dimethyl-FDP, 12-methyl-FDP, 12-hydroxy-FDP, homo-FDP, and 15-methyl-FDP was also achieved. These modified diphosphates were used with terpene synthases to produce the unnatural sesquiterpenoid semiochemicals (S)-14,15-dimethylgermacrene D and (S)-12-methylgermacrene D as well as dihydroartemisinic aldehyde. This approach is applicable to the synthesis of many non-natural terpenoids, offering a scalable route free from repeated chain extensions and capricious chemical phosphorylation reactions.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Terpenos/química , Terpenos/síntesis química , Técnicas de Química Sintética , Fosforilación , Fosfatos de Poliisoprenilo/química , Sesquiterpenos/química
18.
Biochemistry ; 58(22): 2608-2616, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31082213

RESUMEN

Light-oxygen-voltage (LOV) domains are increasingly used to engineer photoresponsive biological systems. While the photochemical cycle is well documented, the allosteric mechanism by which formation of a cysteinyl-flavin adduct leads to activation is unclear. Via replacement of flavin mononucleotide (FMN) with 5-deazaflavin mononucleotide (5dFMN) in the Aureochrome1a (Au1a) transcription factor from Ochromonas danica, a thermally stable cysteinyl-5dFMN adduct was generated. High-resolution crystal structures (<2 Å) under different illumination conditions with either FMN or 5dFMN chromophores reveal three conformations of the highly conserved glutamine 293. An allosteric hydrogen bond network linking the chromophore via Gln293 to the auxiliary A'α helix is observed. With FMN, a "flip" of the Gln293 side chain occurs between dark and lit states. 5dFMN cannot hydrogen bond through the C5 position and proved to be unable to support Au1a domain dimerization. Under blue light, the Gln293 side chain instead "swings" away in a conformation distal to the chromophore and not previously observed in existing LOV domain structures. Together, the multiple side chain conformations of Gln293 and functional analysis of 5dFMN provide new insight into the structural requirements for LOV domain activation.


Asunto(s)
Proteínas Algáceas/química , Flavinas/química , Ribonucleótidos/química , Factores de Transcripción/química , Proteínas Algáceas/efectos de la radiación , Cisteína/química , Mononucleótido de Flavina/química , Glutamina/química , Luz , Ochromonas/química , Conformación Proteica/efectos de la radiación , Dominios Proteicos/efectos de la radiación , Factores de Transcripción/efectos de la radiación
19.
Pediatr Transplant ; 23(4): e13394, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30916861

RESUMEN

Trichodysplasia spinulosa (TS) is a rare cutaneous condition associated with the TSPyV and characterized by skin-colored, folliculocentric papules with keratin spicule formation. TS is seen almost exclusively in immunosuppressed individuals, often presenting in patients with a history of solid organ transplantation or chemotherapy for a lymphoreticular malignancy. We report a case of widespread TS in a 9-year-old girl with a history of renal transplantation complicated by BK viremia, which is also caused by a polyomavirus, BKPyV. The clinical presentation of TS in this case morphologically resembled the more common, harmless skin condition known as "lichen nitidus," and was more extensive than expected for TS, creating a diagnostic challenge. This case illustrates an important presentation of severe TS of which transplant teams, oncologists, primary care providers, and dermatologists should be aware.


Asunto(s)
Anomalías Congénitas/cirugía , Enfermedades Renales/congénito , Trasplante de Riñón/efectos adversos , Riñón/anomalías , Enfermedades de la Piel/diagnóstico , Virus BK , Niño , Diagnóstico Diferencial , Femenino , Humanos , Huésped Inmunocomprometido , Inmunosupresores/efectos adversos , Inmunosupresores/uso terapéutico , Queratinas/química , Riñón/cirugía , Enfermedades Renales/complicaciones , Enfermedades Renales/cirugía , Liquen Nítido , Poliomavirus , Infecciones por Polyomavirus/terapia , Complicaciones Posoperatorias , Piel/patología , Enfermedades de la Piel/etiología , Infecciones Tumorales por Virus/terapia
20.
J Neurosci ; 37(29): 7008-7022, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28634306

RESUMEN

Electrical stimulation of the auditory periphery organ by cochlear implant (CI) generates highly synchronized inputs to the auditory system. It has long been thought such inputs would lead to highly synchronized neural firing along the ascending auditory pathway. However, neurophysiological studies with hearing animals have shown that the central auditory system progressively converts temporal representations of time-varying sounds to firing rate-based representations. It is not clear whether this coding principle also applies to highly synchronized CI inputs. Higher-frequency modulations in CI stimulation have been found to evoke largely transient responses with little sustained firing in previous studies of the primary auditory cortex (A1) in anesthetized animals. Here, we show that, in addition to neurons displaying synchronized firing to CI stimuli, a large population of A1 neurons in awake marmosets (Callithrix jacchus) responded to rapid time-varying CI stimulation with discharges that were not synchronized to CI stimuli, yet reflected changing repetition frequency by increased firing rate. Marmosets of both sexes were included in this study. By comparing directly each neuron's responses to time-varying acoustic and CI signals, we found that individual A1 neurons encode both modalities with similar firing patterns (stimulus-synchronized or nonsynchronized). These findings suggest that A1 neurons use the same basic coding schemes to represent time-varying acoustic or CI stimulation and provide new insights into mechanisms underlying how the brain processes natural sounds via a CI device.SIGNIFICANCE STATEMENT In modern cochlear implant (CI) processors, the temporal information in speech or environmental sounds is delivered through modulated electric pulse trains. How the auditory cortex represents temporally modulated CI stimulation across multiple time scales has remained largely unclear. In this study, we compared directly neuronal responses in primary auditory cortex (A1) to time-varying acoustic and CI signals in awake marmoset monkeys (Callithrix jacchus). We found that A1 neurons encode both modalities using similar coding schemes, but some important differences were identified. Our results provide insights into mechanisms underlying how the brain processes sounds via a CI device and suggest a candidate neural code underlying rate-pitch perception limitations often observed in CI users.


Asunto(s)
Corteza Auditiva/fisiología , Implantes Cocleares , Estimulación Eléctrica/métodos , Potenciales Evocados Auditivos/fisiología , Percepción de la Altura Tonal/fisiología , Vigilia/fisiología , Adaptación Fisiológica/fisiología , Animales , Callithrix/fisiología , Sincronización Cortical/fisiología , Femenino , Masculino , Red Nerviosa/fisiología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA