Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011688, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38153929

RESUMEN

Deep sequencing of wastewater to detect SARS-CoV-2 has been used during the COVID-19 pandemic to monitor viral variants as they appear and circulate in communities. SARS-CoV-2 lineages of an unknown source that have not been detected in clinical samples, referred to as cryptic lineages, are sometimes repeatedly detected from specific locations. We have continued to detect one such lineage previously seen in a Missouri site. This cryptic lineage has continued to evolve, indicating continued selective pressure similar to that observed in Omicron lineages.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aguas Residuales , COVID-19/epidemiología , Missouri/epidemiología , Pandemias
2.
J Virol ; 97(12): e0187022, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37991365

RESUMEN

IMPORTANCE: Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


Asunto(s)
Coinfección , Regulación Viral de la Expresión Génica , Duplicado del Terminal Largo de VIH , VIH-1 , VIH-2 , Interferones , ARN Viral , Productos del Gen tat del Virus de la Inmunodeficiencia Humana , Humanos , Coinfección/inmunología , Coinfección/virología , Duplicado del Terminal Largo de VIH/genética , VIH-1/genética , VIH-1/inmunología , VIH-2/genética , VIH-2/inmunología , VIH-2/metabolismo , ARN Viral/genética , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo , Interferones/inmunología , Regiones Promotoras Genéticas/genética , Unión Competitiva , ARN Polimerasa II/metabolismo , Transcripción Genética
3.
PLoS Pathog ; 18(10): e1010636, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36240259

RESUMEN

Wastewater-based epidemiology (WBE) is an effective way of tracking the appearance and spread of SARS-COV-2 lineages through communities. Beginning in early 2021, we implemented a targeted approach to amplify and sequence the receptor binding domain (RBD) of SARS-COV-2 to characterize viral lineages present in sewersheds. Over the course of 2021, we reproducibly detected multiple SARS-COV-2 RBD lineages that have never been observed in patient samples in 9 sewersheds located in 3 states in the USA. These cryptic lineages contained between 4 to 24 amino acid substitutions in the RBD and were observed intermittently in the sewersheds in which they were found for as long as 14 months. Many of the amino acid substitutions in these lineages occurred at residues also mutated in the Omicron variant of concern (VOC), often with the same substitutions. One of the sewersheds contained a lineage that appeared to be derived from the Alpha VOC, but the majority of the lineages appeared to be derived from pre-VOC SARS-COV-2 lineages. Specifically, several of the cryptic lineages from New York City appeared to be derived from a common ancestor that most likely diverged in early 2020. While the source of these cryptic lineages has not been resolved, it seems increasingly likely that they were derived from long-term patient infections or animal reservoirs. Our findings demonstrate that SARS-COV-2 genetic diversity is greater than what is commonly observed through routine SARS-CoV-2 surveillance. Wastewater sampling may more fully capture SARS-CoV-2 genetic diversity than patient sampling and could reveal new VOCs before they emerge in the wider human population.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , Aguas Residuales , COVID-19/epidemiología , Variación Genética
4.
Cell ; 139(3): 499-511, 2009 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-19879838

RESUMEN

Tetherin is an interferon-induced protein whose expression blocks the release of HIV-1 and other enveloped viral particles. The underlying mechanism by which tetherin functions and whether it directly or indirectly causes virion retention are unknown. Here, we elucidate the mechanism by which tetherin exerts its antiviral activity. We demonstrate, through mutational analyses and domain replacement experiments, that tetherin configuration rather than primary sequence is critical for antiviral activity. These findings allowed the design of a completely artificial protein, lacking sequence homology with native tetherin, that nevertheless mimicked its antiviral activity. We further show that tetherin is incorporated into HIV-1 particles as a parallel homodimer using either of its two membrane anchors. These results indicate that tetherin functions autonomously and directly and that infiltration of virion envelopes by one or both of tetherin's membrane anchors is necessary, and likely sufficient, to tether enveloped virus particles that bud through the plasma membrane.


Asunto(s)
Antígenos CD/metabolismo , VIH-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Virión/metabolismo , Animales , Antígenos CD/química , Antígenos CD/genética , Línea Celular , Membrana Celular/metabolismo , Ebolavirus/metabolismo , Proteínas Ligadas a GPI , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Mutagénesis , Estructura Terciaria de Proteína , Ratas , Proteínas de la Matriz Viral/metabolismo , Proteínas Reguladoras y Accesorias Virales/metabolismo , Replicación Viral
5.
Nature ; 563(7731): E22, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30158708

RESUMEN

In this Letter, the Protein Data Bank (PDB) accessions were incorrectly listed as '6BH5, 6BHT and 6BHS' instead of '6BHR, 6BHT and 6BHS'; this has been corrected online.

6.
Nature ; 560(7719): 509-512, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069050

RESUMEN

A short, 14-amino-acid segment called SP1, located in the Gag structural protein1, has a critical role during the formation of the HIV-1 virus particle. During virus assembly, the SP1 peptide and seven preceding residues fold into a six-helix bundle, which holds together the Gag hexamer and facilitates the formation of a curved immature hexagonal lattice underneath the viral membrane2,3. Upon completion of assembly and budding, proteolytic cleavage of Gag leads to virus maturation, in which the immature lattice is broken down; the liberated CA domain of Gag then re-assembles into the mature conical capsid that encloses the viral genome and associated enzymes. Folding and proteolysis of the six-helix bundle are crucial rate-limiting steps of both Gag assembly and disassembly, and the six-helix bundle is an established target of HIV-1 inhibitors4,5. Here, using a combination of structural and functional analyses, we show that inositol hexakisphosphate (InsP6, also known as IP6) facilitates the formation of the six-helix bundle and assembly of the immature HIV-1 Gag lattice. IP6 makes ionic contacts with two rings of lysine residues at the centre of the Gag hexamer. Proteolytic cleavage then unmasks an alternative binding site, where IP6 interaction promotes the assembly of the mature capsid lattice. These studies identify IP6 as a naturally occurring small molecule that promotes both assembly and maturation of HIV-1.


Asunto(s)
VIH-1/metabolismo , Fosfatos de Inositol/metabolismo , Virión/metabolismo , Ensamble de Virus , Arginina/metabolismo , Cápside/química , Cápside/metabolismo , Cristalografía por Rayos X , VIH-1/química , VIH-1/genética , Técnicas In Vitro , Lisina/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Virión/química , Virión/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
7.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768588

RESUMEN

The first 2 years of the COVID-19 pandemic were mainly characterized by recurrent mutations of SARS-CoV-2 Spike protein at residues K417, L452, E484, N501 and P681 emerging independently across different variants of concern (Alpha, Beta, Gamma, and Delta). Such homoplasy is a marker of convergent evolution. Since Spring 2022 and the third year of the pandemic, with the advent of Omicron and its sublineages, convergent evolution has led to the observation of different lineages acquiring an additional group of mutations at different amino acid residues, namely R346, K444, N450, N460, F486, F490, Q493, and S494. Mutations at these residues have become increasingly prevalent during Summer and Autumn 2022, with combinations showing increased fitness. The most likely reason for this convergence is the selective pressure exerted by previous infection- or vaccine-elicited immunity. Such accelerated evolution has caused failure of all anti-Spike monoclonal antibodies, including bebtelovimab and cilgavimab. While we are learning how fast coronaviruses can mutate and recombine, we should reconsider opportunities for economically sustainable escape-proof combination therapies, and refocus antibody-mediated therapeutic efforts on polyclonal preparations that are less likely to allow for viral immune escape.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Neutralizantes
8.
J Virol ; 95(20): e0064821, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34319154

RESUMEN

During retroviral replication, unspliced viral genomic RNA (gRNA) must escape the nucleus for translation into viral proteins and packaging into virions. "Complex" retroviruses, such as human immunodeficiency virus (HIV), use cis-acting elements on the unspliced gRNA in conjunction with trans-acting viral proteins to facilitate this escape. "Simple" retroviruses, such as Mason-Pfizer monkey virus (MPMV) and murine leukemia virus (MLV), exclusively use cis-acting elements on the gRNA in conjunction with host nuclear export proteins for nuclear escape. Uniquely, the simple retrovirus Rous sarcoma virus (RSV) has a Gag structural protein that cycles through the nucleus prior to plasma membrane binding. This trafficking has been implicated in facilitating gRNA nuclear export and is thought to be a required mechanism. Previously described mutants that abolish nuclear cycling displayed enhanced plasma membrane binding, enhanced virion release, and a significant loss in genome incorporation resulting in loss of infectivity. Here, we describe a nuclear cycling-deficient RSV Gag mutant that has similar plasma membrane binding and genome incorporation to wild-type (WT) virus and surprisingly is replication competent, albeit with a slower rate of spread than observed in WT virus. This mutant suggests that RSV Gag nuclear cycling is not strictly required for RSV replication. IMPORTANCE While mechanisms for retroviral Gag assembly at the plasma membrane are beginning to be characterized, characterization of intermediate trafficking locales remain elusive. This is in part due to the difficulty of tracking individual proteins from translation to plasma membrane binding. Rous sarcoma virus (RSV) Gag nuclear cycling is a unique phenotype that may provide comparative insight to viral trafficking evolution and may present a model intermediate to cis- and trans-acting mechanisms for gRNA export.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Productos del Gen gag/genética , Virus del Sarcoma de Rous/genética , Transporte Activo de Núcleo Celular/genética , Animales , Línea Celular , Núcleo Celular/virología , Productos del Gen gag/metabolismo , Genoma Viral/genética , Humanos , Ratones , ARN Viral/genética , Retroviridae/genética , Virus del Sarcoma de Rous/metabolismo , Virión/metabolismo , Ensamble de Virus
9.
PLoS Pathog ; 16(8): e1008646, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776974

RESUMEN

Inositol hexakisphosphate (IP6) potently stimulates HIV-1 particle assembly in vitro and infectious particle production in vivo. However, knockout cells lacking inositol-pentakisphosphate 2-kinase (IPPK-KO), the enzyme that produces IP6 by phosphorylation of inositol pentakisphosphate (IP5), were still able to produce infectious HIV-1 particles at a greatly reduced rate. HIV-1 in vitro assembly can also be stimulated to a lesser extent with IP5, but until recently, it was not known if IP5 could also function in promoting assembly in vivo. Here we addressed whether there is an absolute requirement for IP6 or IP5 in the production of infectious HIV-1 particles. IPPK-KO cells expressed no detectable IP6 but elevated IP5 levels and displayed a 20-100-fold reduction in infectious particle production, correlating with lost virus release. Transient transfection of an IPPK expression vector stimulated infectious particle production and release in IPPK-KO but not wildtype cells. Several attempts to make IP6/IP5 deficient stable cells were not successful, but transient expression of the enzyme multiple inositol polyphosphate phosphatase-1 (MINPP1) into IPPK-KOs resulted in near ablation of IP6 and IP5. Under these conditions, we found that HIV-1 infectious particle production and virus release were essentially abolished (1000-fold reduction) demonstrating an IP6/IP5 requirement. However, other retroviruses including a Gammaretrovirus, a Betaretrovirus, and two non-primate Lentiviruses displayed only a modest (3-fold) reduction in infectious particle production from IPPK-KOs and were not significantly altered by expression of IPPK or MINPP1. The only other retrovirus found to show a clear IP6/IP5 dependence was the primate (macaque) Lentivirus Simian Immunodeficiency Virus, which displayed similar sensitivity as HIV-1. We were not able to determine if producer cell IP6/IP5 is required at additional steps beyond assembly because viral particles devoid of both molecules could not be generated. Finally, we found that loss of IP6/IP5 in viral target cells had no effect on permissivity to HIV-1 infection.


Asunto(s)
Vectores Genéticos/administración & dosificación , Infecciones por VIH/virología , Fosfatos de Inositol/metabolismo , Lentivirus de los Primates/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Ácido Fítico/metabolismo , Virión/fisiología , Animales , Vectores Genéticos/genética , VIH/fisiología , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Humanos , Fosforilación , Primates
10.
PLoS Pathog ; 16(1): e1008277, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31986188

RESUMEN

Retrovirus assembly is driven by the multidomain structural protein Gag. Interactions between the capsid domains (CA) of Gag result in Gag multimerization, leading to an immature virus particle that is formed by a protein lattice based on dimeric, trimeric, and hexameric protein contacts. Among retroviruses the inter- and intra-hexamer contacts differ, especially in the N-terminal sub-domain of CA (CANTD). For HIV-1 the cellular molecule inositol hexakisphosphate (IP6) interacts with and stabilizes the immature hexamer, and is required for production of infectious virus particles. We have used in vitro assembly, cryo-electron tomography and subtomogram averaging, atomistic molecular dynamics simulations and mutational analyses to study the HIV-related lentivirus equine infectious anemia virus (EIAV). In particular, we sought to understand the structural conservation of the immature lentivirus lattice and the role of IP6 in EIAV assembly. Similar to HIV-1, IP6 strongly promoted in vitro assembly of EIAV Gag proteins into virus-like particles (VLPs), which took three morphologically highly distinct forms: narrow tubes, wide tubes, and spheres. Structural characterization of these VLPs to sub-4Å resolution unexpectedly showed that all three morphologies are based on an immature lattice with preserved key structural components, highlighting the structural versatility of CA to form immature assemblies. A direct comparison between EIAV and HIV revealed that both lentiviruses maintain similar immature interfaces, which are established by both conserved and non-conserved residues. In both EIAV and HIV-1, IP6 regulates immature assembly via conserved lysine residues within the CACTD and SP. Lastly, we demonstrate that IP6 stimulates in vitro assembly of immature particles of several other retroviruses in the lentivirus genus, suggesting a conserved role for IP6 in lentiviral assembly.


Asunto(s)
Anemia Infecciosa Equina/metabolismo , Productos del Gen gag/química , Productos del Gen gag/metabolismo , Virus de la Anemia Infecciosa Equina/fisiología , Ácido Fítico/metabolismo , Virión/fisiología , Secuencia de Aminoácidos , Animales , Tomografía con Microscopio Electrónico , Anemia Infecciosa Equina/virología , Productos del Gen gag/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , VIH-1/ultraestructura , Caballos , Interacciones Huésped-Patógeno , Virus de la Anemia Infecciosa Equina/química , Virus de la Anemia Infecciosa Equina/genética , Virus de la Anemia Infecciosa Equina/ultraestructura , Alineación de Secuencia , Virión/genética , Virión/ultraestructura , Ensamble de Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
11.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32788194

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) Spike glycoprotein is solely responsible for binding to the host cell receptor and facilitating fusion between the viral and host membranes. The ability to generate viral particles pseudotyped with SARS-COV-2 Spike is useful for many types of studies, such as characterization of neutralizing antibodies or development of fusion-inhibiting small molecules. Here, we characterized the use of a codon-optimized SARS-COV-2 Spike glycoprotein for the generation of pseudotyped HIV-1, murine leukemia virus (MLV), and vesicular stomatitis virus (VSV) particles. The full-length Spike protein functioned inefficiently with all three systems but was enhanced over 10-fold by deleting the last 19 amino acids of the cytoplasmic tail. Infection of 293FT target cells was possible only if the cells were engineered to stably express the human angiotensin-converting enzyme 2 (ACE2) receptor, but stably introducing an additional copy of this receptor did not further enhance susceptibility. Stable introduction of the Spike-activating protease TMPRSS2 further enhanced susceptibility to infection by 5- to 10-fold. Replacement of the signal peptide of the Spike protein with an optimal signal peptide did not enhance or reduce infectious particle production. However, modifications D614G and R682Q further enhanced infectious particle production. With all enhancing elements combined, the titer of pseudotyped HIV-1 particles reached almost 106 infectious particles/ml. Finally, HIV-1 particles pseudotyped with SARS-COV-2 Spike were successfully used to detect neutralizing antibodies in plasma from coronavirus disease 2019 (COVID-19) patients, but not in plasma from uninfected individuals.IMPORTANCE In work with pathogenic viruses, it is useful to have rapid quantitative tests for viral infectivity that can be performed without strict biocontainment restrictions. A common way of accomplishing this is to generate viral pseudoparticles that contain the surface glycoprotein from the pathogenic virus incorporated into a replication-defective viral particle that contains a sensitive reporter system. These pseudoparticles enter cells using the glycoprotein from the pathogenic virus, leading to a readout for infection. Conditions that block entry of the pathogenic virus, such as neutralizing antibodies, will also block entry of the viral pseudoparticles. However, viral glycoproteins often are not readily suited for generating pseudoparticles. Here, we describe a series of modifications that result in the production of relatively high-titer SARS-COV-2 pseudoparticles that are suitable for the detection of neutralizing antibodies from COVID-19 patients.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Glicoproteína de la Espiga del Coronavirus/fisiología , Enzima Convertidora de Angiotensina 2 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/genética , Betacoronavirus/inmunología , Betacoronavirus/metabolismo , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/metabolismo , Células HEK293 , VIH-1/genética , VIH-1/metabolismo , Humanos , Virus de la Leucemia Murina , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/inmunología , Neumonía Viral/metabolismo , SARS-CoV-2 , Serina Endopeptidasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virus de la Estomatitis Vesicular Indiana/genética , Virus de la Estomatitis Vesicular Indiana/metabolismo , Virión/genética , Virión/inmunología , Virión/metabolismo , Internalización del Virus
12.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894464

RESUMEN

Viruses can incorporate foreign glycoproteins to form infectious particles through a process known as pseudotyping. However, not all glycoproteins are compatible with all viruses. Despite the fact that viral pseudotyping is widely used, what makes a virus/glycoprotein pair compatible is poorly understood. To study this, we chose to analyze a gammaretroviral glycoprotein (Env) whose compatibility with different viruses could be modulated through small changes in its cytoplasmic tail (CT). One form of this glycoprotein is compatible with murine leukemia virus (MLV) particles but incompatible with human immunodeficiency virus type 1 (HIV-1) particles, while the second is compatible with HIV-1 particles but not with MLV particles. To decipher the factors affecting virus-specific Env incompatibility, we characterized Env incorporation, maturation, cell-to-cell fusogenicity, and virus-to-cell fusogenicity of each Env. The HIV-1 particle incompatibility correlated with less efficient cleavage of the R peptide by HIV-1 protease. However, the MLV particle incompatibility was more nuanced. MLV incompatibility appeared to be caused by lack of incorporation into particles, yet incorporation could be restored by further truncating the CT or by using a chimeric MLV Gag protein containing the HIV-1 MA without fully restoring infectivity. The MLV particle incompatibility appeared to be caused in part by fusogenic repression in MLV particles through an unknown mechanism. This study demonstrates that the Env CT can dictate functionality of Env within particles in a virus-specific manner.IMPORTANCE Viruses utilize viral glycoproteins to efficiently enter target cells during infection. How viruses acquire viral glycoproteins has been studied to understand the pathogenesis of viruses and develop safer and more efficient viral vectors for gene therapies. The CTs of viral glycoproteins have been shown to regulate various stages of glycoprotein biogenesis, but a gap still remains in understanding the molecular mechanism of glycoprotein acquisition and functionality regarding the CT. Here, we studied the mechanism of how specific mutations in the CT of a gammaretroviral envelope glycoprotein distinctly affect infectivity of two different viruses. Different mutations caused failure of glycoproteins to function in a virus-specific manner due to distinct fusion defects, suggesting that there are virus-specific characteristics affecting glycoprotein functionality.


Asunto(s)
Gammaretrovirus/genética , Productos del Gen env/genética , Proteínas del Envoltorio Viral/genética , Animales , Línea Celular , Membrana Celular/metabolismo , Gammaretrovirus/metabolismo , Productos del Gen env/metabolismo , Productos del Gen gag/genética , Células HEK293 , VIH-1/metabolismo , Humanos , Virus de la Leucemia Murina/genética , Virus de la Leucemia Murina/metabolismo , Ratones , Mutación , Especificidad de la Especie , Virión/metabolismo , Ensamble de Virus
13.
J Immunol ; 199(2): 677-687, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28600291

RESUMEN

Sphingosine 1-phosphate (S1P) lyase (SPL) is an intracellular enzyme that mediates the irreversible degradation of the bioactive lipid S1P. We have previously reported that overexpressed SPL displays anti-influenza viral activity; however, the underlying mechanism is incompletely understood. In this study, we demonstrate that SPL functions as a positive regulator of IKKε to propel type I IFN-mediated innate immune responses against viral infection. Exogenous SPL expression inhibited influenza A virus replication, which correlated with an increase in type I IFN production and IFN-stimulated gene accumulation upon infection. In contrast, the lack of SPL expression led to an elevated cellular susceptibility to influenza A virus infection. In support of this, SPL-deficient cells were defective in mounting an effective IFN response when stimulated by influenza viral RNAs. SPL augmented the activation status of IKKε and enhanced the kinase-induced phosphorylation of IRF3 and the synthesis of type I IFNs. However, the S1P degradation-incompetent form of SPL also enhanced IFN responses, suggesting that SPL's pro-IFN function is independent of S1P. Biochemical analyses revealed that SPL, as well as the mutant form of SPL, interacts with IKKε. Importantly, when endogenous IKKε was downregulated using a small interfering RNA approach, SPL's anti-influenza viral activity was markedly suppressed. This indicates that IKKε is crucial for SPL-mediated inhibition of influenza virus replication. Thus, the results illustrate the functional significance of the SPL-IKKε-IFN axis during host innate immunity against viral infection.


Asunto(s)
Aldehído-Liasas/metabolismo , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Virus de la Influenza A/inmunología , Interferón Tipo I/inmunología , Células A549 , Aldehído-Liasas/deficiencia , Aldehído-Liasas/genética , Regulación hacia Abajo , Activación Enzimática , Células HEK293 , Humanos , Quinasa I-kappa B/genética , Virus de la Influenza A/fisiología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/biosíntesis , Lisofosfolípidos/metabolismo , Fosforilación , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Replicación Viral
14.
Nucleic Acids Res ; 45(10): 6087-6097, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334941

RESUMEN

RNA aptamers that bind HIV-1 reverse transcriptase (RT) inhibit HIV-1 replication, but little is known about potential aptamer-specific viral resistance. During replication, RT interacts with diverse nucleic acids. Thus, the genetic threshold for eliciting resistance may be high for aptamers that make numerous contacts with RT. To evaluate the impact of RT-aptamer binding specificity on replication, we engineered proviral plasmids encoding diverse RTs within the backbone of HIV-1 strain NL4-3. Viruses inhibited by pseudoknot aptamers were rendered insensitive by a naturally occurring R277K variant, providing the first demonstration of aptamer-specific resistance in cell culture. Naturally occurring, pseudoknot-insensitive viruses were rendered sensitive by the inverse K277R mutation, establishing RT as the genetic locus for aptamer-mediated HIV-1 inhibition. Non-pseudoknot RNA aptamers exhibited broad-spectrum inhibition. Inhibition was observed only when virus was produced in aptamer-expressing cells, indicating that encapsidation is required. HIV-1 suppression magnitude correlated with the number of encapsidated aptamer transcripts per virion, with saturation occurring around 1:1 stoichiometry with packaged RT. Encapsidation specificity suggests that aptamers may encounter dimerized GagPol in the cytosol during viral assembly. This study provides new insights into HIV-1's capacity to escape aptamer-mediated inhibition, the potential utility of broad-spectrum aptamers to overcome resistance, and molecular interactions that occur during viral assembly.


Asunto(s)
Aptámeros de Nucleótidos/farmacología , Transcriptasa Inversa del VIH/metabolismo , Inhibidores de la Transcriptasa Inversa/farmacología , Aptámeros de Nucleótidos/metabolismo , Cápside/metabolismo , Células HEK293 , VIH-1/efectos de los fármacos , VIH-1/enzimología , VIH-1/ultraestructura , Humanos , Mutación Missense , Conformación de Ácido Nucleico , Unión Proteica , Provirus/enzimología , Provirus/ultraestructura , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa , Inhibidores de la Transcriptasa Inversa/metabolismo , Transfección , Replicación Viral/efectos de los fármacos
16.
J Virol ; 90(14): 6502-14, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27147747

RESUMEN

UNLABELLED: Enveloped viruses utilize transmembrane surface glycoproteins to gain entry into target cells. Glycoproteins from diverse viral families can be incorporated into nonnative viral particles in a process termed pseudotyping; however, the molecular mechanisms governing acquisition of these glycoproteins are poorly understood. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles has been shown to be an active process, but it does not appear to be caused by direct interactions among viral proteins. In this study, we coupled in vivo selection systems with Illumina next-generation sequencing (NGS) to test hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles and to perform other glycoprotein functions. NGS analyses on a subset of these mutants predicted that the residues important for incorporation are in the membrane-proximal external region (MPER), particularly W127 and W137, and the residues in the membrane-spanning domain (MSD) and also immediately flanking it (T140 to L163). These predictions were validated by directly measuring the impact of mutations in these regions on fusogenicity, infectivity, and incorporation. We suggest that these two regions dictate pseudotyping through interactions with specific lipid environments formed during viral assembly. IMPORTANCE: Researchers from numerous fields routinely exploit the ability to manipulate viral tropism by swapping viral surface proteins. However, this process, termed pseudotyping, is poorly understood at the molecular level. For murine leukemia virus envelope (MLV Env) glycoprotein, incorporation into foreign viral particles is an active process, but it does not appear to occur through direct viral protein-protein interactions. In this study, we tested hundreds of thousands of MLV Env mutants for the ability to be enriched in viral particles as well as perform other glycoprotein functions. Our analyses on a subset of these mutants predict that the glycoprotein regions embedded in and immediately flanking the viral membrane dictate active incorporation into viral particles. We suggest that pseudotyping occurs through specific lipid-protein interactions at the viral assembly site.


Asunto(s)
Células HEK293/virología , Virus de la Leucemia Murina/genética , Infecciones por Retroviridae/virología , Proteínas del Envoltorio Viral/metabolismo , Ensamble de Virus , Internalización del Virus , Secuencia de Aminoácidos , Animales , Fusión Celular , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Mutagénesis , Mutación/genética , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética
18.
Proc Natl Acad Sci U S A ; 111(35): E3699-707, 2014 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-25136083

RESUMEN

Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Infecciones por VIH/metabolismo , VIH-1/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Virales/metabolismo , Linfocitos T CD4-Positivos/virología , Membrana Celular/metabolismo , Membrana Celular/virología , Técnicas de Silenciamiento del Gen , Células HEK293 , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Células HeLa , Receptor Celular 1 del Virus de la Hepatitis A , Receptor 2 Celular del Virus de la Hepatitis A , Humanos , Células Jurkat , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Fosfatidilserinas/metabolismo , ARN Interferente Pequeño/genética , Receptores Virales/genética , Virión/crecimiento & desarrollo , Virión/metabolismo , Replicación Viral/fisiología
19.
J Virol ; 89(24): 12492-500, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26446598

RESUMEN

UNLABELLED: The membrane-proximal region of murine leukemia virus envelope (Env) is a critical modulator of its functionality. We have previously shown that the insertion of one amino acid (+1 leucine) within the membrane-spanning domain (MSD) abolished protein functionality in infectivity assays. However, functionality could be restored to this +1 leucine mutant by either inserting two additional amino acids (+3 leucine) or by deleting the cytoplasmic tail domain (CTD) in the +1 leucine background. We inferred that the ectodomain and CTD have protein interfaces that have to be in alignment for Env to be functional. Here, we made single residue deletions to the Env mutant with the +1 leucine insertion to restore the interface alignment (gain of functionality) and therefore define the boundaries of the two interfaces. We identified the glycine-proline pairs near the N terminus (positions 147 and 148) and the C terminus (positions 159 and 160) of the MSD as being the boundaries of the two interfaces. Deletions between these pairs restored function, but deletions outside of them did not. In addition, the vast majority of the single residue deletions regained function if the CTD was deleted. The exceptions were four hydroxyl-containing amino acid residues (T139, T140, S143, and T144) that reside in the ectodomain interface and the proline at position 148, which were all indispensable for functionality. We hypothesize that the hydroxyl-containing residues at positions T139 and S143 could be a driving force for stabilizing the ectodomain interface through formation of a hydrogen-bonding network. IMPORTANCE: The membrane-proximal external region (MPER) and membrane-spanning domains (MSDs) of viral glycoproteins have been shown to be critical for regulating glycoprotein fusogenicity. However, the roles of these two domains are poorly understood. We report here that point deletions and insertions within the MPER or MSD result in functionally inactive proteins. However, when the C-terminal tail domain (CTD) is deleted, the majority of the proteins remain functional. The only residues that were found to be critical for function regardless of the CTD were four hydroxyl-containing amino acids located at the C terminus of the MPER (T139 and T140) and at the N terminus of the MSD (S143 and T144) and a proline near the beginning of the MSD (P148). We demonstrate that hydrogen-bonding at positions T139 and S143 is critical for protein function. Our findings provide novel insights into the role of the MPER in regulating fusogenic activity of viral glycoproteins.


Asunto(s)
Virus de la Leucemia Murina/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Secuencia de Aminoácidos , Animales , Células HEK293 , Humanos , Virus de la Leucemia Murina/genética , Ratones , Estructura Terciaria de Proteína , Eliminación de Secuencia , Proteínas del Envoltorio Viral/genética
20.
Retrovirology ; 11: 28, 2014 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-24708808

RESUMEN

BACKGROUND: Retroviruses can acquire not only their own glycoproteins as they bud from the cellular membrane, but also some cellular and foreign viral glycoproteins. Many of these non-native glycoproteins are actively recruited to budding virions, particularly other viral glycoproteins. This observation suggests that there may be a conserved mechanism underlying the recruitment of glycoproteins into viruses. If a conserved mechanism is used, diverse glycoproteins should localize to a single budding retroviral particle. On the other hand, if viral glycoproteins have divergent mechanisms for recruitment, the different glycoproteins could segregate into different particles. RESULTS: To determine if co-packaging occurs among different glycoproteins, we designed an assay that combines virion antibody capture and a determination of infectivity based on a luciferase reporter. Virions were bound to a plate with an antibody against one glycoprotein, and then the infectivity was measured with cells that allow entry only with a second glycoprotein. We tested pairings of glycoproteins from HIV, murine leukemia virus (MLV), Rous sarcoma virus (RSV), vesicular stomatitis virus (VSV), and Ebola virus. The results showed that glycoproteins that were actively recruited into virions were co-packaged efficiently with each other. We also tested cellular proteins and found CD4 also had a similar correlation between active recruitment and efficient co-packaging, but other cellular proteins did not. CONCLUSION: Glycoproteins that are actively incorporated into HIV-1 virions are efficiently co-packaged into the same virus particles, suggesting that the same general mechanism for recruitment may act in many viruses.


Asunto(s)
Antígenos CD4/metabolismo , Glicoproteínas/metabolismo , VIH-1/fisiología , Proteínas Virales/metabolismo , Ensamble de Virus , Línea Celular , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA