Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 169(6): 1078-1089.e13, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575671

RESUMEN

In flies, Centrosomin (Cnn) forms a phosphorylation-dependent scaffold that recruits proteins to the mitotic centrosome, but how Cnn assembles into a scaffold is unclear. We show that scaffold assembly requires conserved leucine zipper (LZ) and Cnn-motif 2 (CM2) domains that co-assemble into a 2:2 complex in vitro. We solve the crystal structure of the LZ:CM2 complex, revealing that both proteins form helical dimers that assemble into an unusual tetramer. A slightly longer version of the LZ can form micron-scale structures with CM2, whose assembly is stimulated by Plk1 phosphorylation in vitro. Mutating individual residues that perturb LZ:CM2 tetramer assembly perturbs the formation of these micron-scale assemblies in vitro and Cnn-scaffold assembly in vivo. Thus, Cnn molecules have an intrinsic ability to form large, LZ:CM2-interaction-dependent assemblies that are critical for mitotic centrosome assembly. These studies provide the first atomic insight into a molecular interaction required for mitotic centrosome assembly.


Asunto(s)
Centrosoma/química , Centrosoma/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Mitosis , Secuencia de Aminoácidos , Animales , Drosophila melanogaster/química , Proteínas de Homeodominio/metabolismo , Modelos Moleculares , Fosforilación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/metabolismo , Alineación de Secuencia
2.
Mol Cell ; 67(4): 566-578.e10, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28803781

RESUMEN

50 years ago, Vincent Allfrey and colleagues discovered that lymphocyte activation triggers massive acetylation of chromatin. However, the molecular mechanisms driving epigenetic accessibility are still unknown. We here show that stimulated lymphocytes decondense chromatin by three differentially regulated steps. First, chromatin is repositioned away from the nuclear periphery in response to global acetylation. Second, histone nanodomain clusters decompact into mononucleosome fibers through a mechanism that requires Myc and continual energy input. Single-molecule imaging shows that this step lowers transcription factor residence time and non-specific collisions during sampling for DNA targets. Third, chromatin interactions shift from long range to predominantly short range, and CTCF-mediated loops and contact domains double in numbers. This architectural change facilitates cognate promoter-enhancer contacts and also requires Myc and continual ATP production. Our results thus define the nature and transcriptional impact of chromatin decondensation and reveal an unexpected role for Myc in the establishment of nuclear topology in mammalian cells.


Asunto(s)
Linfocitos B/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Ensamble y Desensamble de Cromatina , Cromatina/metabolismo , Histonas/metabolismo , Activación de Linfocitos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Adenosina Trifosfato/metabolismo , Animales , Linfocitos B/inmunología , Línea Celular , Cromatina/química , Cromatina/genética , Metilación de ADN , Epigénesis Genética , Genotipo , Histonas/química , Inmunidad Humoral , Metilación , Ratones Endogámicos C57BL , Ratones Noqueados , Conformación de Ácido Nucleico , Fenotipo , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Imagen Individual de Molécula , Relación Estructura-Actividad , Factores de Tiempo , Transcripción Genética
3.
J Exp Biol ; 227(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38180227

RESUMEN

Specialization in plant pollination systems can arise from traits that function as filters of flower visitors. This may involve chemical traits such as floral volatiles that selectively attract favoured visitors and non-volatile nectar constituents that selectively deter disfavoured visitors through taste or longer-term toxic effects or both. We explored the functions of floral chemical traits in the African milkweed Gomphocarpus physocarpus, which is pollinated almost exclusively by vespid wasps, despite having nectar that is highly accessible to other insects such as honeybees. We demonstrated that the nectar of wasp-pollinated G. physocarpus contains cardenolides that had greater toxic effects on Apis mellifera honeybees than on Vespula germanica wasps, and also reduced feeding rates by honeybees. Behavioural experiments using natural compositions of nectar compounds showed that these interactions are mediated by non-volatile nectar chemistry. We also identified volatile compounds with acetic acid as a main component in the floral scent of G. physocarpus that elicited electrophysiological responses in wasp antennae. Mixtures of these compounds were behaviourally effective for attraction of V. germanica wasps. The results show the importance of both volatile and non-volatile chemical traits as filters that lead to specialization in plant pollination systems.


Asunto(s)
Néctar de las Plantas , Avispas , Animales , Abejas , Polinización , Flores , Cardenólidos
4.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749930

RESUMEN

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

5.
Cancer ; 129(21): 3381-3389, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37395170

RESUMEN

BACKGROUND: Patients with locally advanced head and neck squamous cell cancer (HNSCC) are treated with surgery followed by adjuvant (chemo) radiotherapy or definitive chemoradiation, but recurrence rates are high. Immune checkpoint blockade improves survival in patients with recurrent/metastatic HNSCC; however, the role of chemo-immunotherapy in the curative setting is not established. METHODS: This phase 2, single-arm, multicenter study evaluated neoadjuvant chemo-immunotherapy with carboplatin, nab-paclitaxel, and durvalumab in patients with resectable locally advanced HNSCC. The primary end point was a hypothesized pathologic complete response rate of 50%. After chemo-immunotherapy and surgical resection, patients received study-defined, pathologic risk adapted adjuvant therapy consisting of either durvalumab alone (low risk), involved field radiation plus weekly cisplatin and durvalumab (intermediate risk), or standard chemoradiation plus durvalumab (high risk). RESULTS: Between December 2017 and November 2021, 39 subjects were enrolled at three centers. Oral cavity was the most common primary site (69%). A total of 35 of 39 subjects underwent planned surgical resection; one subject had a delay in surgery due to treatment-related toxicity. The most common treatment-related adverse events were cytopenias, fatigue, and nausea. Post treatment imaging demonstrated an objective response rate of 57%. Pathologic complete response and major pathologic response were achieved in 29% and 49% of subjects who underwent planned surgery, respectively. The 1-year progression-free survival was 83.8% (95% confidence interval, 67.4%-92.4%). CONCLUSIONS: Neoadjuvant carboplatin, nab-paclitaxel, and durvalumab before surgical resection of HNSCC were safe and feasible. Although the primary end point was not met, encouraging rates of pathologic complete response and clinical to pathologic downstaging were observed.

6.
Proc Biol Sci ; 290(2008): 20231148, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37788703

RESUMEN

Mating success of flowering plants depends strongly on the efficiencies of pollen removal from flowers and its subsequent dispersal to conspecific stigmas. We characterized the economy of pollen dispersal in flowering plants by analysing pollen fates and their correlates for 228 species. The mean percentage of pollen removed from flowers (removal efficiency) varied almost twofold according to the type of pollen-dispersal unit, from less than 45% for orchids and milkweeds with solid pollinia, to greater than 80% for species with granular monads or sectile (segmented) pollinia. The mean percentage of removed pollen reaching stigmas (pollen transfer efficiency, PTE) varied from 2.4% for species with separate monads to 27.0% for orchids with solid pollinia. These values tended to be higher in plants with single pollinator species and in those with non-grooming pollinators. Nectar production increased removal efficiency, but did not influence PTE. Among types of pollen-dispersal units, the net percentage of produced pollen that was dispersed to stigmas varied negatively with removal efficiency and positively with PTE, indicating the relative importance of the latter for overall pollen economy. These findings confirm the key importance of floral traits, particularly pollen packaging, for pollen dispersal outcomes and highlight the under-appreciated pollination efficiency of non-grooming pollinators.


Asunto(s)
Magnoliopsida , Polen , Reproducción , Polinización , Plantas , Flores
7.
New Phytol ; 239(4): 1490-1504, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36938986

RESUMEN

Kleptomyiophily, where flowers imitate wounded insects to attract 'kleptoparasitic' flies as pollinators, is one of the most specialized types of floral mimicry and often involves physical trapping devices. However, the diversity of pollinators and functional floral traits involved in this form of mimicry remain poorly understood. We report a novel example of kleptomyiophily in the nontrapping flowers of Ceropegia gerrardii and explore the floral traits responsible for attracting pollinators. The pollinators, reproductive biology and floral traits (including epidermal surfaces, spectral reflectance and the composition of nectariferous petal secretions and scent) were investigated. Attractive volatiles were identified using electrophysiological and behavioural experiments. Ceropegia gerrardii was predominantly pollinated by kleptoparasitic Desmometopa spp. (Milichiidae) flies. The flower corollas extrude a protein- and sugar-containing secretion, similar to the haemolymph of wounded insects, on which the flies feed. Floral scent was chemically similar to that of injured honey bees. Four out of 24 electrophysiologically active compounds, all released by injured honey bees, were identified as key players in pollinator attraction. Our results suggest that C. gerrardii flowers chemically mimic wounded honey bees to attract kleptoparasitic flies and reward them with a secretion similar to the haemolymph on which they would normally feed.


Asunto(s)
Apocynaceae , Dípteros , Abejas , Animales , Dípteros/fisiología , Polinización/fisiología , Insectos/fisiología , Feromonas , Flores/fisiología
8.
Opt Express ; 31(4): 5290-5296, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36823813

RESUMEN

A limitation of free-space optical communications is the ease with which the information can be intercepted. This limitation can be overcome by hiding the information within background optical noise. We demonstrate the transfer of images over free-space using a photon-pair source emitting two correlated beams. One of these beams contains image information, to which noise is added, and the other correlated beam is used as a heralding trigger so that the intended recipient can differentiate this image signal from the background noise. The system uses spontaneous parametric down-conversion to create photon-pairs with a wide spectral bandwidth and a gated intensified camera to extract the image from the background noise. The high-dimensionality of the image space means that the information content can be many bits per detected photon, whereas the heralding photon can be restricted to a single spatial-mode within a secure fiber which itself could be protected against interception by traditional low-dimensionality quantum key protocols.

9.
Opt Express ; 31(3): 4964-4977, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785451

RESUMEN

We present a general framework for inverse design of nanopatterned surfaces that maximize spatially averaged surface-enhanced Raman (SERS) spectra from molecules distributed randomly throughout a material or fluid, building upon a recently proposed trace formulation for optimizing incoherent emission. This leads to radically different designs than optimizing SERS emission at a single known location, as we illustrate using several 2D design problems addressing effects of hot-spot density, angular selectivity, and nonlinear damage. We obtain optimized structures that perform about 4 × better than coating with optimized spheres or bowtie structures and about 20 × better when the nonlinear damage effects are included.

10.
Opt Express ; 31(15): 24260-24272, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475257

RESUMEN

Traditional optical elements and conventional metasurfaces obey shift-invariance in the paraxial regime. For imaging systems obeying paraxial shift-invariance, a small shift in input angle causes a corresponding shift in the sensor image. Shift-invariance has deep implications for the design and functionality of optical devices, such as the necessity of free space between components (as in compound objectives made of several curved surfaces). We present a method for nanophotonic inverse design of compact imaging systems whose resolution is not constrained by paraxial shift-invariance. Our method is end-to-end, in that it integrates density-based full-Maxwell topology optimization with a fully iterative elastic-net reconstruction algorithm. By the design of nanophotonic structures that scatter light in a non-shift-invariant manner, our optimized nanophotonic imaging system overcomes the limitations of paraxial shift-invariance, achieving accurate, noise-robust image reconstruction beyond shift-invariant resolution.

11.
Opt Lett ; 48(19): 5101-5104, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37773395

RESUMEN

We demonstrate self-compression of 98 fs near-infrared laser pulses down to 8.8 fs in ambient air, utilizing self-phase modulation in air and negative dispersion in the properties of a laser-induced plasma. The blueshifted pulses achieve self-compression through conical radiation, eliminating the need for additional dispersion compensation. The results highlight a simple and compact approach to generate sub-10 fs laser pulses without additional measures for time-resolved applications in ultrafast diagnostics and spectroscopy.

12.
FASEB J ; 36(3): e22198, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35199390

RESUMEN

GroES/GroEL is the only bacterial chaperone essential under all conditions, making it a potential antibiotic target. Rationally targeting ESKAPE GroES/GroEL as an antibiotic strategy necessitates studying their structure and function. Herein, we outline the structural similarities between Escherichia coli and ESKAPE GroES/GroEL and identify significant differences in intra- and inter-ring cooperativity, required in the refolding cycle of client polypeptides. Previously, we observed that one-half of ESKAPE GroES/GroEL family members could not support cell viability when each was individually expressed in GroES/GroEL-deficient E. coli cells. Cell viability was found to be dependent on the allosteric compatibility between ESKAPE and E. coli subunits within mixed (E. coli and ESKAPE) tetradecameric GroEL complexes. Interestingly, differences in allostery did not necessarily result in differences in refolding rate for a given homotetradecameric chaperonin. Characterization of ESKAPE GroEL allostery, ATPase, and refolding rates in this study will serve to inform future studies focused on inhibitor design and mechanism of action studies.


Asunto(s)
Sitio Alostérico , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Chaperonina 10/química , Chaperonina 10/genética , Chaperonina 10/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
13.
Curr Diab Rep ; 23(8): 207-216, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37284921

RESUMEN

PURPOSE OF REVIEW: Multiple studies report an increased incidence of diabetes following SARS-CoV-2 infection. Given the potential increased global burden of diabetes, understanding the effect of SARS-CoV-2 in the epidemiology of diabetes is important. Our aim was to review the evidence pertaining to the risk of incident diabetes after COVID-19 infection. RECENT FINDINGS: Incident diabetes risk increased by approximately 60% compared to patients without SARS-CoV-2 infection. Risk also increased compared to non-COVID-19 respiratory infections, suggesting SARS-CoV-2-mediated mechanisms rather than general morbidity after respiratory illness. Evidence is mixed regarding the association between SARS-CoV-2 infection and T1D. SARS-CoV-2 infection is associated with an elevated risk of T2D, but it is unclear whether the incident diabetes is persistent over time or differs in severity over time. SARS-CoV-2 infection is associated with an increased risk of incident diabetes. Future studies should evaluate vaccination, viral variant, and patient- and treatment-related factors that influence risk.


Asunto(s)
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/epidemiología , Incidencia
14.
EMBO Rep ; 22(10): e52729, 2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34347930

RESUMEN

Accurate Notch signalling is critical for development and homeostasis. Fine-tuning of Notch-ligand interactions has substantial impact on signalling outputs. Recent structural studies have identified a conserved N-terminal C2 domain in human Notch ligands which confers phospholipid binding in vitro. Here, we show that Drosophila ligands Delta and Serrate adopt the same C2 domain structure with analogous variations in the loop regions, including the so-called ß1-2 loop that is involved in phospholipid binding. Mutations in the ß1-2 loop of the Delta C2 domain retain Notch binding but have impaired ability to interact with phospholipids in vitro. To investigate its role in vivo, we deleted five residues within the ß1-2 loop of endogenous Delta. Strikingly, this change compromises ligand function. The modified Delta enhances phenotypes produced by Delta loss-of-function alleles and suppresses that of Notch alleles. As the modified protein is present on the cell surface in normal amounts, these results argue that C2 domain phospholipid binding is necessary for robust signalling in vivo fine-tuning the balance of trans and cis ligand-receptor interactions.


Asunto(s)
Proteínas de Drosophila , Receptores Notch , Dominios C2 , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Humanos , Ligandos , Proteínas de la Membrana , Fosfolípidos , Receptores Notch/genética
15.
Ann Bot ; 132(6): 1107-1118, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37632775

RESUMEN

BACKGROUND AND AIMS: Sexual polymorphisms of flowers have traditionally been interpreted as devices that promote cross-pollination, but they may also represent adaptations for exploiting particular pollination niches in local environments. The cross-pollination function of enantiostyly, characterized by flowers having either left- or right-deflected styles, has been uncertain in some lineages, such as the Haemodoraceae, because the positioning of stamens and styles is not always completely reciprocal among morphs. METHODS: We examined the floral biology of populations of the poorly known species Barberetta aurea (Haemodoraceae) across its native range in South Africa to establish the general features of its enanatiostylous reproductive system and the agents and mechanism of pollen transfer. RESULTS: We confirmed that B. aurea has a system of dimorphic enantiostyly. Style morph ratios varied among populations sampled, but with an overall tendency to being equal. Crossing experiments demonstrated that B. aurea is fully self-compatible, that intra- and inter-morph crosses are equally fertile and that it is wholly dependent on pollinator visits for seed production. Pollination is mainly by syrphid flies that transfer the sticky pollen via their wings, which contact the anthers and stigma precisely as they hover during approach and feeding. The majority of syrphid fly visitors feed on a film of highly concentrated nectar situated at the base of ultraviolet-absorbent 'nectar guides'. Because one of the three stamens is deflected in the same direction as the style, we predicted a high likelihood of intra-morph pollination, and this was corroborated by patterns of transfer of coloured dye particles in cage experiments involving syrphid flies. CONCLUSIONS: Barbaretta aurea exhibits dimorphic enantiostyly and, in contrast to most enantiostylous species, which are pollinated by bees, its flowers are specialized for pollination by syrphid flies. The lack of complete reciprocity of the enantiostylous arrangement of sexual organs facilitates both inter- and intra-morph pollen transfer on the wings of these flies.


Asunto(s)
Dípteros , Polinización , Abejas , Animales , Néctar de las Plantas , Dípteros/genética , Flores/genética , Semillas , Reproducción
16.
Ann Bot ; 131(2): 275-286, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36479901

RESUMEN

BACKGROUND AND AIMS: Trap flowers are fascinating cases of adaptation, often linked to oviposition-site mimicry systems. Some trap flowers do not imprison pollinators for a pre-determined period, but rather force them to move through a specific path, manipulating their movements in a way that culminates in pollen transfer, often as they leave through a secondary opening. METHODS: We investigated the previously unknown pollination system of the lady's slipper orchid Phragmipedium vittatum and assessed the function of micro-morphological traits of its trap flowers. KEY RESULTS: Our observations revealed that P. vittatum is pollinated by females of two hoverfly species (Syrphidae). Eggs laid by flies on or near raised black spots on the flowers indicate that the orchid mimics aphids which serve as food for their aphidophagous larvae. Dark, elevated aphid-like spots appear to attract the attention of hoverflies to a slipping zone. This region has downward projecting papillate cells and mucilage secretion that promote slipperiness, causing potential pollinators to fall into the labellum. They then follow a specific upward route towards inner aphid-like spots by holding onto upward oriented hairs that aid their grip. As hoverflies are funnelled by the lateral constriction of the labellum, they pass the stigma, depositing pollen they may be carrying. Later, they squeeze under one of the articulated anthers which places pollen smears onto their upper thorax. Then, they depart through one of the narrow lateral holes by holding onto hairs projecting from the petals. CONCLUSIONS: This study confirms the system of aphid mimicry in Phragmipedium and highlights the sophisticated micro-morphological traits used by trap flowers in pollinator attraction, trapping, guidance and release, thus promoting precise pollen transfer.


Asunto(s)
Áfidos , Animales , Femenino , Aclimatación , Brasil , Flores , Polen , Polinización
17.
Am J Bot ; 110(6): e16177, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37146240

RESUMEN

PREMISE: The relative per-flower production of ovules and pollen varies broadly with angiosperm mating systems, with outcrossing types commonly producing more pollen grains per ovule than selfing types. The evolutionary causes of this variation are contentious, especially the relevance of pollination risk. Resolution of this debate may have been hampered by its focus on pollen:ovule (P:O) ratios rather than on the evolution of pollen and ovule numbers per se. METHODS: Using published mean ovule and pollen counts, we analyzed associations with the proportion of removed pollen that reaches stigmas (pollen-transfer efficiency) and differences between pollinator-dependent and autogamous forms within and among species. Analyses involved Bayesian methods that simultaneously considered variation in pollen and ovule numbers and accounted for phylogenetic relatedness. We also assessed the utility of P:O ratios as mating-system proxies and their association with female outcrossing rates. RESULTS: Median pollen number declined consistently with pollen-transfer efficiency among species, whereas median ovule number did not. Similarly, in both intraspecific and interspecific analyses, pollinator-dependent plants produced more pollen than autogamous plants, whereas ovule production did not differ statistically. Distributions of P:O ratios overlapped extensively for self-incompatible and self-compatible species and for different mating-system classes, and P:O ratios correlated weakly with outcrossing rate. CONCLUSIONS: Our findings demonstrate that pollinator dependence and pollination efficiency commonly influence the evolution of pollen number per flower but have more limited effects on ovule number. P:O ratios provide ambiguous, possibly misleading, information about mating systems, especially when compared among clades.


Asunto(s)
Magnoliopsida , Polinización , Filogenia , Óvulo Vegetal , Teorema de Bayes , Reproducción , Polen , Flores
18.
Dement Geriatr Cogn Disord ; 52(1): 39-46, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36808103

RESUMEN

BACKGROUND: Cardiovascular disease (CVD), including elevated blood pressure (BP), is known to promote Alzheimer's disease (AD) risk. Although brain amyloid load is a recognized hallmark of pre-symptomatic AD, its relationship to increased BP is less known. The objective of this study was to examine the relationship of BP to brain estimates of amyloid-ß (Aß) and standard uptake ratio (SUVr). We hypothesized that increased BP is associated with increased SUVr. METHODS: Using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI), we stratified BP according to the Seventh Joint National Committee (JNC) on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure Classification (JNC VII). Florbetapir (AV-45) SUVr was derived from the averaged frontal, anterior cingulate, precuneus, and parietal cortex relative to the cerebellum. A linear mixed-effects model enabled the elucidation of amyloid SUVr relationships to BP. The model discounted the effects of demographics, biologics, and diagnosis at baseline within APOE genotype groups. The least squares means procedure was used to estimate the fixed-effect means. All analyses were performed using the Statistical Analysis System (SAS). RESULTS: In non-ɛ4 carrier MCI subjects, escalating JNC categories of BP was associated with increasing mean SUVr using JNC-4 as a reference point (low-normal (JNC1) p = 0.018; normal (JNC-1) p = 0.039; JNC-2 p = 0.018 and JNC-3 p = 0.04). A significantly higher brain SUVr was associated with increasing BP despite adjustment for demographics and biological variables in non-ɛ4 carriers but not in ɛ4-carriers. This observation supports the view that CVD risk may promote increased brain amyloid load, and potentially, amyloid-mediated cognitive decline. CONCLUSION: Increasing levels of JNC classification of BP is dynamically associated with significant changes in brain amyloid burden in non-ɛ4 carriers but not in ɛ4-carrier MCI subjects. Though not statistically significant, amyloid burden tended to decrease with increasing BP in ɛ4 homozygote, perhaps motivated by increased vascular resistance and the need for higher brain perfusion pressure.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Cardiovasculares , Disfunción Cognitiva , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Presión Sanguínea , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Disfunción Cognitiva/psicología , Péptidos beta-Amiloides , Neuroimagen , Amiloide/metabolismo
19.
J Biomed Inform ; 139: 104295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716983

RESUMEN

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Asunto(s)
COVID-19 , Humanos , Algoritmos , Proyectos de Investigación , Sesgo , Probabilidad
20.
Proc Natl Acad Sci U S A ; 117(1): 362-370, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31871188

RESUMEN

The complement system is a crucial part of innate immune defenses against invading pathogens. The blood-meal of the tick Rhipicephalus pulchellus lasts for days, and the tick must therefore rely on inhibitors to counter complement activation. We have identified a class of inhibitors from tick saliva, the CirpT family, and generated detailed structural data revealing their mechanism of action. We show direct binding of a CirpT to complement C5 and have determined the structure of the C5-CirpT complex by cryoelectron microscopy. This reveals an interaction with the peripheral macro globulin domain 4 (C5_MG4) of C5. To achieve higher resolution detail, the structure of the C5_MG4-CirpT complex was solved by X-ray crystallography (at 2.7 Å). We thus present the fold of the CirpT protein family, and provide detailed mechanistic insights into its inhibitory function. Analysis of the binding interface reveals a mechanism of C5 inhibition, and provides information to expand our biological understanding of the activation of C5, and thus the terminal complement pathway.


Asunto(s)
Proteínas de Artrópodos/inmunología , Activación de Complemento/inmunología , Complemento C5/antagonistas & inhibidores , Inmunidad Innata , Rhipicephalus/inmunología , Animales , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/ultraestructura , Complemento C5/inmunología , Complemento C5/ultraestructura , Microscopía por Crioelectrón , Cristalografía por Rayos X , Eritrocitos/inmunología , Conducta Alimentaria , Femenino , Cobayas , Hemólisis/inmunología , Humanos , Masculino , Unión Proteica/inmunología , Dominios Proteicos/inmunología , Conejos , Ratas , Rhipicephalus/metabolismo , Saliva/inmunología , Saliva/metabolismo , Ovinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA