Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Virol ; 93(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31068425

RESUMEN

The benefits of mucosal vaccines over injected vaccines are difficult to ascertain, since mucosally administered vaccines often induce serum antibody responses of lower magnitude than those induced by injected vaccines. This study aimed to determine if mucosal vaccination using a modified vaccinia virus Ankara expressing human immunodeficiency virus type 1 (HIV-1) gp120 (MVAgp120) prime and a HIV-1 gp120 protein boost could be optimized to induce serum antibody responses similar to those induced by an intramuscularly (i.m.) administered MVAgp120 prime/gp120 boost to allow comparison of an i.m. immunization regimen to a mucosal vaccination regimen for the ability to protect against a low-dose rectal simian-human immunodeficiency virus (SHIV) challenge. A 3-fold higher antigen dose was required for intranasal (i.n.) immunization with gp120 to induce serum anti-gp120 IgG responses not significantly different than those induced by i.m. immunization. gp120 fused to the adenovirus type 2 fiber binding domain (gp120-Ad2F), a mucosal targeting ligand, exhibited enhanced i.n. immunogenicity compared to gp120. MVAgp120 was more immunogenic after i.n. delivery than after gastric or rectal delivery. Using these optimized vaccines, an i.n. MVAgp120 prime/combined i.m. (gp120) and i.n. (gp120-Ad2F) boost regimen (i.n./i.m.-plus-i.n.) induced serum anti-gp120 antibody titers similar to those induced by the intramuscular prime/boost regimen (i.m./i.m.) in rabbits and nonhuman primates. Despite the induction of similar systemic anti-HIV-1 antibody responses, neither the i.m./i.m. nor the i.n./i.m.-plus-i.n. regimen protected against a repeated low-dose rectal SHIV challenge. These results demonstrate that immunization regimens utilizing the i.n. route are able to induce serum antigen-specific antibody responses similar to those induced by systemic immunization.IMPORTANCE Mucosal vaccination is proposed as a method of immunization able to induce protection against mucosal pathogens that is superior to protection provided by parenteral immunization. However, mucosal vaccination often induces serum antigen-specific immune responses of lower magnitude than those induced by parenteral immunization, making the comparison of mucosal and parenteral immunization difficult. We identified vaccine parameters that allowed an immunization regimen consisting of an i.n. prime followed by boosters administered by both i.n. and i.m. routes to induce serum antibody responses similar to those induced by i.m. prime/boost vaccination. Additional studies are needed to determine the potential benefit of mucosal immunization for HIV-1 and other mucosally transmitted pathogens.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Inmunización Secundaria , Vacunación , Virus Vaccinia/inmunología , Vacunas contra el SIDA/genética , Administración Intranasal , Animales , Proteína gp120 de Envoltorio del VIH/genética , VIH-1/genética , Humanos , Inmunidad Mucosa , Ratones , Virus Vaccinia/genética
4.
Front Allergy ; 4: 1275373, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859977

RESUMEN

The increasing food allergy incidence has led to significant interest in developing therapies for allergic diseases. Oral allergen-specific immunotherapy (OIT) is a recently FDA-approved therapeutic to treat peanut allergies. OIT utilizes daily allergen dosing to reduce allergic reactions to peanuts. However, there is diminished enthusiasm for daily OIT, potentially due to the strict regimen required to induce desensitization and the risks of severe adverse events. Thus, there remains a need for safe and effective food allergy treatments that are well-received by allergic individuals. Preclinical research studies investigate methods to induce allergen desensitization in animals and support clinical studies that address the limitations of current food allergy OIT. Because allergic reactions are triggered by allergen doses above an individual's activation threshold, immunotherapy regimens that induce allergen desensitization with lower allergen doses or without the requirement of daily administrations may expand the use of food allergy immunotherapy. Administering allergen immunotherapy by alternative routes is a strategy to induce desensitization using lower allergen doses than OIT. Several animal models have evaluated oral, sublingual, epicutaneous, and intranasal immunotherapy routes to treat food allergies. Each immunotherapy route may require different allergen doses, formulations, and treatment schedules to induce desensitization. This article will discuss scientific findings from food allergy immunotherapy animal studies that utilize various immunotherapy routes to induce allergen desensitization to support future clinical studies that enhance the safety and efficacy of allergen immunotherapy to treat food allergies.

5.
Int J Pharm ; 634: 122658, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36731641

RESUMEN

Recently, there has been increasing interest in the activation of mast cells to promote vaccine efficacy. Several mast cell activating (MCA) compounds have been reported such as M7 and Compound 48/80 (C48/80). While these MCAs have been proven to be efficacious vaccine adjuvants, their translatability is limited by batch-to-batch variability, challenging large-scale manufacturing, and poor in vivo stability for the M7 peptide. Due to this, high throughput screening was performed to identify small molecule MCAs. Several potent MCAs were identified via this screening, but the in vivo translatability of the compounds was limited due to their poor aqueous solubility. To enhance the delivery of these MCAs we encapsulated them in acetalated dextran (Ace-DEX) microparticles (MPs). We have previously utilized Ace-DEX MPs for vaccine delivery due to their passive targeting to phagocytic cells, acid sensitivity, and tunable degradation. Four different MCA loaded MPs were combined with West Nile Virus Envelope III protein (EDIII) and their vaccine adjuvant activities were compared in vivo. MPs containing the small molecule MCA ST101036 produced the highest anti-EDIII IgG titers of all the MCAs tested. Further, ST101036 MPs produced higher titers than ST101036 formulated with PEG as a cosolvent which highlights the benefit of Ace-DEX MPs over a conventional formulation technique. Finally, in a mouse model of West Nile Virus infection ST101036 MPs produced similar survival to soluble M7 (80-90%). Overall, these data show that ST101036 MPs produce a robust antibody response against EDIII and survival emphasizing the benefits of using Ace-DEX as a delivery platform for the poorly soluble ST101036.


Asunto(s)
Mastocitos , Virus del Nilo Occidental , Animales , Ratones , Dextranos/química , Sistemas de Liberación de Medicamentos , Vacunación
6.
Front Immunol ; 12: 730346, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566991

RESUMEN

Mast cell activators are a novel class of mucosal vaccine adjuvants. The polymeric compound, Compound 48/80 (C48/80), and cationic peptide, Mastoparan 7 (M7) are mast cell activators that provide adjuvant activity when administered by the nasal route. However, small molecule mast cell activators may be a more cost-efficient adjuvant alternative that is easily synthesized with high purity compared to M7 or C48/80. To identify novel mast cell activating compounds that could be evaluated for mucosal vaccine adjuvant activity, we employed high-throughput screening to assess over 55,000 small molecules for mast cell degranulation activity. Fifteen mast cell activating compounds were down-selected to five compounds based on in vitro immune activation activities including cytokine production and cellular cytotoxicity, synthesis feasibility, and selection for functional diversity. These small molecule mast cell activators were evaluated for in vivo adjuvant activity and induction of protective immunity against West Nile Virus infection in BALB/c mice when combined with West Nile Virus envelope domain III (EDIII) protein in a nasal vaccine. We found that three of the five mast cell activators, ST101036, ST048871, and R529877, evoked high levels of EDIII-specific antibody and conferred comparable levels of protection against WNV challenge. The level of protection provided by these small molecule mast cell activators was comparable to the protection evoked by M7 (67%) but markedly higher than the levels seen with mice immunized with EDIII alone (no adjuvant 33%). Thus, novel small molecule mast cell activators identified by high throughput screening are as efficacious as previously described mast cell activators when used as nasal vaccine adjuvants and represent next-generation mast cell activators for evaluation in mucosal vaccine studies.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Degranulación de la Célula/efectos de los fármacos , Inmunidad Mucosa/efectos de los fármacos , Mastocitos/efectos de los fármacos , Fiebre del Nilo Occidental/prevención & control , Vacunas contra el Virus del Nilo Occidental/administración & dosificación , Virus del Nilo Occidental/patogenicidad , Administración Intranasal , Animales , Línea Celular , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Femenino , Ensayos Analíticos de Alto Rendimiento , Interacciones Huésped-Patógeno , Inmunidad Mucosa/genética , Inmunización , Inmunogenicidad Vacunal , Mastocitos/inmunología , Mastocitos/virología , Ratones Endogámicos BALB C , Prueba de Estudio Conceptual , Fiebre del Nilo Occidental/genética , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/inmunología
7.
Front Immunol ; 11: 599637, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33542716

RESUMEN

Food allergy is a potentially fatal disease affecting 8% of children and has become increasingly common in the past two decades. Despite the prevalence and severe nature of the disease, the mechanisms underlying sensitization remain to be further elucidated. The Collaborative Cross is a genetically diverse panel of inbred mice that were specifically developed to study the influence of genetics on complex diseases. Using this panel of mouse strains, we previously demonstrated CC027/GeniUnc mice, but not C3H/HeJ mice, develop peanut allergy after oral exposure to peanut in the absence of a Th2-skewing adjuvant. Here, we investigated factors associated with sensitization in CC027/GeniUnc mice following oral exposure to peanut, walnut, milk, or egg. CC027/GeniUnc mice mounted antigen-specific IgE responses to peanut, walnut and egg, but not milk, while C3H/HeJ mice were not sensitized to any antigen. Naïve CC027/GeniUnc mice had markedly lower total fecal IgA compared to C3H/HeJ, which was accompanied by stark differences in gut microbiome composition. Sensitized CC027/GeniUnc mice had significantly fewer CD3+ T cells but higher numbers of CXCR5+ B cells and T follicular helper cells in the mesenteric lymph nodes compared to C3H/HeJ mice, which is consistent with their relative immunoglobulin production. After oral challenge to the corresponding food, peanut- and walnut-sensitized CC027/GeniUnc mice experienced anaphylaxis, whereas mice exposed to milk and egg did not. Ara h 2 was detected in serum collected post-challenge from peanut-sensitized mice, indicating increased absorption of this allergen, while Bos d 5 and Gal d 2 were not detected in mice exposed to milk and egg, respectively. Machine learning on the change in gut microbiome composition as a result of food protein exposure identified a unique signature in CC027/GeniUnc mice that experienced anaphylaxis, including the depletion of Akkermansia. Overall, these results demonstrate several factors associated with enteral sensitization in CC027/GeniUnc mice, including diminished total fecal IgA, increased allergen absorption and altered gut microbiome composition. Furthermore, peanuts and tree nuts may have inherent properties distinct from milk and eggs that contribute to allergy.


Asunto(s)
Alérgenos/inmunología , Heces/microbiología , Microbioma Gastrointestinal/inmunología , Inmunoglobulina A/inmunología , Absorción Intestinal/inmunología , Hipersensibilidad al Cacahuete , Alérgenos/genética , Animales , Microbioma Gastrointestinal/genética , Predisposición Genética a la Enfermedad , Inmunoglobulina A/genética , Absorción Intestinal/genética , Ratones , Ratones Transgénicos , Hipersensibilidad al Cacahuete/genética , Hipersensibilidad al Cacahuete/inmunología , Hipersensibilidad al Cacahuete/microbiología
8.
SLAS Discov ; 24(6): 628-640, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30917061

RESUMEN

Mast cells (MCs) are known to regulate innate and adaptive immunity. MC activators have recently been described as safe and effective vaccine adjuvants. Many currently known MC activators are inadequate for in vivo applications, however, and research on identifying novel MC activators is limited. In this study, we identified novel MC activators by using high-throughput screening (HTS) assays using approximately 55,000 small molecules. Data sets obtained by the primary HTS assays were statistically evaluated using quality control rules and the B-score calculation, and compounds with B-scores of >3.0 were chosen as mast cell activators (hits). These hits were re-evaluated with secondary and tertiary HTS assays, followed by further statistical analysis. From these hits, we selected 15 compounds that caused degranulation in murine and human MCs, with potential for flexible chemical modification for further study. Among these 15 compounds, ST101036, ST029248, and ST026567 exhibited higher degranulation potency than other hit compounds in both human and mouse MCs. In addition, the 15 compounds identified promote de novo synthesis of cytokines and induce the release of eicosanoids from human and mouse MCs. HTS enabled us to identify small-molecule MC activators with unique properties that may be useful as vaccine adjuvants.


Asunto(s)
Degranulación de la Célula/efectos de los fármacos , Descubrimiento de Drogas , Ensayos Analíticos de Alto Rendimiento , Mastocitos/efectos de los fármacos , Mastocitos/inmunología , Animales , Ácido Araquidónico/metabolismo , Biomarcadores , Línea Celular , Supervivencia Celular/efectos de los fármacos , Citocinas/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Mastocitos/metabolismo , Ratones , Control de Calidad , Bibliotecas de Moléculas Pequeñas
9.
Front Immunol ; 9: 2156, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30319619

RESUMEN

Food allergies are a growing public health concern with an estimated 8% of US children affected. Peanut allergies are also on the rise and often do not spontaneously resolve, leaving individuals at-risk for potentially life-threatening anaphylaxis throughout their lifetime. Currently, two forms of peanut immunotherapy, oral immunotherapy (OIT) and epicutaneous immunotherapy (EPIT), are in Phase III clinical trials and have shown promise to induce desensitization in many subjects. However, there are several limitations with OIT and EPIT, such as allergic side effects, daily dosing requirements, and the infrequent outcome of long-term tolerance. Next-generation therapies for peanut allergy should aim to overcome these limitations, which may be achievable with adjuvanted immunotherapy. An adjuvant can be defined as anything that enhances, accelerates, or modifies an immune response to a particular antigen. Adjuvants may allow for lower doses of antigen to be given leading to decreased side effects; may only need to be administered every few weeks or months rather than daily exposures; and may induce a long-lasting protective effect. In this review article, we highlight examples of adjuvants and formulations that have shown pre-clinical efficacy in treating peanut allergy.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Antígenos Bacterianos/administración & dosificación , Inmunoterapia/métodos , Hipersensibilidad al Cacahuete/terapia , Vacunas Sintéticas/administración & dosificación , Administración Oral , Animales , Antígenos Bacterianos/inmunología , Ensayos Clínicos Fase III como Asunto , Modelos Animales de Enfermedad , Humanos , Hipersensibilidad al Cacahuete/inmunología , Probióticos/administración & dosificación , Resultado del Tratamiento , Vacunas Sintéticas/inmunología
10.
Vaccine ; 33(33): 4141-5, 2015 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-26144902

RESUMEN

An injectable Vi-capsular polysaccharide vaccine against typhoid fever is available but vaccine-induced immunity tends to wane over time. The phenomenon of immunotolerance or hyporesponsiveness has earlier been described for polysaccharide vaccines such as pneumococcal capsular polysaccharide vaccine and some publications also suggest a possible immunotolerance after revaccination with Vi-capsular polysaccharide vaccines. In this study, post-immunisation antibody concentrations in adult travellers first vaccinated with a Salmonella typhi Vi-capsular polysaccharide vaccine (primary vaccination group) were compared with those having received one or more vaccinations previously (multiple vaccinations group). Vaccines administered were Typherix(®) (GlaxoSmithKline), Typhim Vi(®) (Sanofi Pasteur MSD) or Hepatyrix(®) (GlaxoSmithKline). Blood samples were obtained prior to vaccination (day 0) and on day 28 (-1/+14) after vaccination. Serum Vi-Antigen IgG concentrations were measured by ELISA. Of the 85 subjects included in the per protocol data set, 45 (53%) belonged to the multiple vaccinations group. In both groups, geometric mean antibody concentrations (GMCs) were significantly higher after vaccination than before vaccination. Pre-vaccination GMCs were lower in the primary vaccination group than in the multiple vaccinations group (3.40 µg/ml versus 6.13 µg/ml, P=0.005), while there was no significant difference in the post vaccination GMCs between groups (11.34 µg/ml versus 14.58 µg/ml, P=0.4). In the multiple vaccinations group, vaccination was performed 18 to 57 months after the last vaccination (median 38 months) and there was a negative correlation between time since last vaccination and antibody concentration on day 0. In conclusion, we were not able to demonstrate a relevant immunotolerance after multiple versus primary vaccination with S. typhi Vi-capsular polysaccharide vaccines.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Inmunización Secundaria , Polisacáridos Bacterianos/inmunología , Vacunas contra la Salmonella/administración & dosificación , Vacunas contra la Salmonella/inmunología , Adolescente , Adulto , Anciano , Ensayo de Inmunoadsorción Enzimática , Femenino , Voluntarios Sanos , Humanos , Tolerancia Inmunológica , Inmunoglobulina G/sangre , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Viaje , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA