Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 134(3): 521-33, 2008 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-18692474

RESUMEN

MicroRNAs (miRNAs) are crucial for normal embryonic stem (ES) cell self-renewal and cellular differentiation, but how miRNA gene expression is controlled by the key transcriptional regulators of ES cells has not been established. We describe here the transcriptional regulatory circuitry of ES cells that incorporates protein-coding and miRNA genes based on high-resolution ChIP-seq data, systematic identification of miRNA promoters, and quantitative sequencing of short transcripts in multiple cell types. We find that the key ES cell transcription factors are associated with promoters for miRNAs that are preferentially expressed in ES cells and with promoters for a set of silent miRNA genes. This silent set of miRNA genes is co-occupied by Polycomb group proteins in ES cells and shows tissue-specific expression in differentiated cells. These data reveal how key ES cell transcription factors promote the ES cell miRNA expression program and integrate miRNAs into the regulatory circuitry controlling ES cell identity.


Asunto(s)
Células Madre Embrionarias/metabolismo , MicroARNs/genética , Transcripción Genética , Animales , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
2.
Genes Dev ; 24(10): 992-1009, 2010 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-20413612

RESUMEN

MicroRNAs (miRNAs) are small regulatory RNAs that derive from distinctive hairpin transcripts. To learn more about the miRNAs of mammals, we sequenced 60 million small RNAs from mouse brain, ovary, testes, embryonic stem cells, three embryonic stages, and whole newborns. Analysis of these sequences confirmed 398 annotated miRNA genes and identified 108 novel miRNA genes. More than 150 previously annotated miRNAs and hundreds of candidates failed to yield sequenced RNAs with miRNA-like features. Ectopically expressing these previously proposed miRNA hairpins also did not yield small RNAs, whereas ectopically expressing the confirmed and newly identified hairpins usually did yield small RNAs with the classical miRNA features, including dependence on the Drosha endonuclease for processing. These experiments, which suggest that previous estimates of conserved mammalian miRNAs were inflated, provide a substantially revised list of confidently identified murine miRNAs from which to infer the general features of mammalian miRNAs. Our analyses also revealed new aspects of miRNA biogenesis and modification, including tissue-specific strand preferences, sequential Dicer cleavage of a metazoan precursor miRNA (pre-miRNA), consequential 5' heterogeneity, newly identified instances of miRNA editing, and evidence for widespread pre-miRNA uridylation reminiscent of miRNA regulation by Lin28.


Asunto(s)
Genes/genética , Genoma/genética , MicroARNs/genética , Animales , Línea Celular , Perfilación de la Expresión Génica , Humanos , Secuencias Invertidas Repetidas/genética , Ratones , MicroARNs/biosíntesis , MicroARNs/metabolismo , Ribonucleasa III/metabolismo
3.
Genome Res ; 21(9): 1395-403, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21685129

RESUMEN

MicroRNAs (miRNAs) regulate numerous biological processes by base-pairing with target messenger RNAs (mRNAs), primarily through sites in 3' untranslated regions (UTRs), to direct the repression of these targets. Although miRNAs have sometimes been observed to target genes through sites in open reading frames (ORFs), large-scale studies have shown such targeting to be generally less effective than 3' UTR targeting. Here, we show that several miRNAs each target significant groups of genes through multiple sites within their coding regions. This ORF targeting, which mediates both predictable and effective repression, arises from highly repeated sequences containing miRNA target sites. We show that such sequence repeats largely arise through evolutionary duplications and occur particularly frequently within families of paralogous C(2)H(2) zinc-finger genes, suggesting the potential for their coordinated regulation. Examples of ORFs targeted by miR-181 include both the well-known tumor suppressor RB1 and RBAK, encoding a C(2)H(2) zinc-finger protein and transcriptional binding partner of RB1. Our results indicate a function for repeat-rich coding sequences in mediating post-transcriptional regulation and reveal circumstances in which miRNA-mediated repression through ORF sites can be reliably predicted.


Asunto(s)
MicroARNs/metabolismo , Sistemas de Lectura Abierta/genética , ARN Mensajero/química , Secuencias Repetitivas de Ácidos Nucleicos , Secuencias de Aminoácidos , Animales , Duplicación de Gen , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Humanos , Dedos de Zinc/genética
4.
Genome Res ; 17(12): 1850-64, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17989254

RESUMEN

MicroRNA (miRNA) genes give rise to small regulatory RNAs in a wide variety of organisms. We used computational methods to predict miRNAs conserved among Drosophila species and large-scale sequencing of small RNAs from Drosophila melanogaster to experimentally confirm and complement these predictions. In addition to validating 20 of our top 45 predictions for novel miRNA loci, the large-scale sequencing identified many miRNAs that had not been predicted. In total, 59 novel genes were identified, increasing our tally of confirmed fly miRNAs to 148. The large-scale sequencing also refined the identities of previously known miRNAs and provided insights into their biogenesis and expression. Many miRNAs were expressed in particular developmental contexts, with a large cohort of miRNAs expressed primarily in imaginal discs. Conserved miRNAs typically were expressed more broadly and robustly than were nonconserved miRNAs, and those conserved miRNAs with more restricted expression tended to have fewer predicted targets than those expressed more broadly. Predicted targets for the expanded set of microRNAs substantially increased and revised the miRNA-target relationships that appear conserved among the fly species. Insights were also provided into miRNA gene evolution, including evidence for emergent regulatory function deriving from the opposite arm of the miRNA hairpin, exemplified by mir-10, and even the opposite strand of the DNA, exemplified by mir-iab-4.


Asunto(s)
Drosophila melanogaster/genética , Evolución Molecular , Regulación del Desarrollo de la Expresión Génica/fisiología , MicroARNs/biosíntesis , MicroARNs/genética , ARN Mensajero/metabolismo , Animales , Secuencia de Bases , Biología Computacional/métodos , Secuencia Conservada , Drosophila melanogaster/embriología , MicroARNs/metabolismo , Datos de Secuencia Molecular , Conformación de Ácido Nucleico
5.
Mol Cell ; 27(1): 91-105, 2007 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-17612493

RESUMEN

Mammalian microRNAs (miRNAs) pair to 3'UTRs of mRNAs to direct their posttranscriptional repression. Important for target recognition are approximately 7 nt sites that match the seed region of the miRNA. However, these seed matches are not always sufficient for repression, indicating that other characteristics help specify targeting. By combining computational and experimental approaches, we uncovered five general features of site context that boost site efficacy: AU-rich nucleotide composition near the site, proximity to sites for coexpressed miRNAs (which leads to cooperative action), proximity to residues pairing to miRNA nucleotides 13-16, positioning within the 3'UTR at least 15 nt from the stop codon, and positioning away from the center of long UTRs. A model combining these context determinants quantitatively predicts site performance both for exogenously added miRNAs and for endogenous miRNA-message interactions. Because it predicts site efficacy without recourse to evolutionary conservation, the model also identifies effective nonconserved sites and siRNA off-targets.


Asunto(s)
Emparejamiento Base/genética , Mamíferos/genética , MicroARNs/genética , MicroARNs/metabolismo , Regiones no Traducidas 3'/genética , Animales , Secuencia de Bases , Sitios de Unión , Codón de Terminación/genética , Secuencia Conservada , Regulación hacia Abajo/genética , Células HeLa , Humanos , MicroARNs/química , Modelos Genéticos , Datos de Secuencia Molecular , Nucleótidos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especificidad por Sustrato
6.
Science ; 310(5755): 1817-21, 2005 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-16308420

RESUMEN

Thousands of mammalian messenger RNAs are under selective pressure to maintain 7-nucleotide sites matching microRNAs (miRNAs). We found that these conserved targets are often highly expressed at developmental stages before miRNA expression and that their levels tend to fall as the miRNA that targets them begins to accumulate. Nonconserved sites, which outnumber the conserved sites 10 to 1, also mediate repression. As a consequence, genes preferentially expressed at the same time and place as a miRNA have evolved to selectively avoid sites matching the miRNA. This phenomenon of selective avoidance extends to thousands of genes and enables spatial and temporal specificities of miRNAs to be revealed by finding tissues and developmental stages in which messages with corresponding sites are expressed at lower levels.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica , Mamíferos/genética , MicroARNs/metabolismo , ARN Mensajero/genética , Animales , Secuencia de Bases , Diferenciación Celular , Secuencia Conservada , Perfilación de la Expresión Génica , Humanos , Ratones , Datos de Secuencia Molecular , Fibras Musculares Esqueléticas/citología , Fibras Musculares Esqueléticas/metabolismo , Especificidad de Órganos , Estabilidad del ARN , ARN Mensajero/metabolismo , Ratas , Especificidad de la Especie , Regiones no Traducidas , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA