RESUMEN
Swine influenza virus (SIV) can cause respiratory illness in swine. Swine contribute to influenza virus reassortment, as avian, human, and/or swine influenza viruses can infect swine and reassort, and new viruses can emerge. Thus, it is important to determine the host antiviral responses that affect SIV replication. In this study, we examined the innate antiviral cytokine response to SIV by swine respiratory epithelial cells, focusing on the expression of interferon (IFN) and interferon-stimulated genes (ISGs). Both primary and transformed swine nasal and tracheal respiratory epithelial cells were examined following infection with field isolates. The results show that IFN and ISG expression is maximal at 12 h postinfection (hpi) and is dependent on cell type and virus genotype. IMPORTANCE Swine are considered intermediate hosts that have facilitated influenza virus reassortment events that have given rise pandemics or genetically related viruses have become established in swine. In this study, we examine the innate antiviral response to swine influenza virus in primary and immortalized swine nasal and tracheal epithelial cells, and show virus strain- and host cell type-dependent differential expression of key interferons and interferon-stimulated genes.
Asunto(s)
Citocinas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H1N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Mucosa Respiratoria/inmunología , Animales , Línea Celular , Citocinas/inmunología , Perros , Células Epiteliales/virología , Interacciones Huésped-Patógeno/inmunología , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H1N2 del Virus de la Influenza A/crecimiento & desarrollo , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Interferones/inmunología , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/inmunología , Mucosa Respiratoria/citología , Porcinos , Replicación Viral/fisiologíaRESUMEN
UNLABELLED: Vaccine manufacturing costs prevent a significant portion of the world's population from accessing protection from vaccine-preventable diseases. To enhance vaccine production at reduced costs, a genome-wide RNA interference (RNAi) screen was performed to identify gene knockdown events that enhanced poliovirus replication. Primary screen hits were validated in a Vero vaccine manufacturing cell line using attenuated and wild-type poliovirus strains. Multiple single and dual gene silencing events increased poliovirus titers >20-fold and >50-fold, respectively. Host gene knockdown events did not affect virus antigenicity, and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9-mediated knockout of the top candidates dramatically improved viral vaccine strain production. Interestingly, silencing of several genes that enhanced poliovirus replication also enhanced replication of enterovirus 71, a clinically relevant virus to which vaccines are being targeted. The discovery that host gene modulation can markedly increase virus vaccine production dramatically alters mammalian cell-based vaccine manufacturing possibilities and should facilitate polio eradication using the inactivated poliovirus vaccine. IMPORTANCE: Using a genome-wide RNAi screen, a collection of host virus resistance genes was identified that, upon silencing, increased poliovirus and enterovirus 71 production by from 10-fold to >50-fold in a Vero vaccine manufacturing cell line. This report provides novel insights into enterovirus-host interactions and describes an approach to developing the next generation of vaccine manufacturing through engineered vaccine cell lines. The results show that specific gene silencing and knockout events can enhance viral titers of both attenuated (Sabin strain) and wild-type polioviruses, a finding that should greatly facilitate global implementation of inactivated polio vaccine as well as further reduce costs for live-attenuated oral polio vaccines. This work describes a platform-enabling technology applicable to most vaccine-preventable diseases.
Asunto(s)
Poliomielitis/prevención & control , Vacunas contra Poliovirus/aislamiento & purificación , Poliovirus/aislamiento & purificación , Poliovirus/fisiología , Tecnología Farmacéutica/métodos , Replicación Viral , Animales , Vacunas Atenuadas/aislamiento & purificación , Células Vero , Cultivo de Virus/métodosRESUMEN
Influenza A virus and respiratory syncytial virus (RSV) cause substantial morbidity and mortality afflicting the ends of the age spectrum during the autumn through winter months in the United States. The benefit of vaccination against RSV and influenza using a subunit vaccine to enhance immunity and neutralizing antibody was investigated. Influenza virus hemagglutinin (HA) and RSV fusion (F) protein were tested as vaccine components alone and in combination to explore the adjuvant properties of RSV F protein on HA immunity. Mice vaccinated with HA and F exhibited robust immunity that, when challenged, had reduced viral burden for both influenza and RSV. These studies show an enhancing and cross-protective benefit of F protein for anti-HA immunity.
Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Virus de la Influenza A/patogenicidad , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Virus Sincitial Respiratorio/prevención & control , Vacunas contra Virus Sincitial Respiratorio/uso terapéutico , Virus Sincitiales Respiratorios/patogenicidad , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Western Blotting , Células Cultivadas , Chlorocebus aethiops , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Humanos , Virus de la Influenza A/inmunología , Pulmón/inmunología , Pulmón/patología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Subunidades de Proteína , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/inmunología , Receptor Toll-Like 4/fisiología , Células Vero , Proteínas Virales de Fusión/genéticaRESUMEN
Respiratory syncytial virus (RSV) causes substantial morbidity and life-threatening lower respiratory tract disease in infants, young children and the elderly. Understanding the host response to RSV infection is critical for developing disease-intervention approaches. The role of microRNAs (miRNAs) in post-transcriptional regulation of host genes responding to RSV infection is not well understood. In this study, it was shown that RSV infection of a human alveolar epithelial cell line (A549) induced five miRNAs (let-7f, miR-24, miR-337-3p, miR-26b and miR-520a-5p) and repressed two miRNAs (miR-198 and miR-595), and showed that RSV G protein triggered let-7f expression. Luciferase-untranslated region reporters and miRNA mimics and inhibitors validated the predicted targets, which included cell-cycle genes (CCND1, DYRK2 and ELF4), a chemokine gene (CCL7) and the suppressor of cytokine signalling 3 gene (SOCS3). Modulating let-7 family miRNA levels with miRNA mimics and inhibitors affected RSV replication, indicating that RSV modulates host miRNA expression to affect the outcome of the antiviral host response, and this was mediated in part through RSV G protein expression.
Asunto(s)
Regulación Viral de la Expresión Génica/fisiología , MicroARNs/metabolismo , Procesamiento Postranscripcional del ARN/fisiología , Virus Sincitiales Respiratorios/fisiología , Replicación Viral/fisiología , Animales , Secuencia de Bases , Línea Celular , Chlorocebus aethiops , Células Epiteliales/metabolismo , Células Epiteliales/virología , Humanos , MicroARNs/genética , Alveolos Pulmonares/citología , Células VeroRESUMEN
RNA viruses like SARS-CoV-2, influenza virus, and respiratory syncytial virus (RSV) are dependent on host genes for replication. We investigated if probenecid, an FDA-approved and safe urate-lowering drug that inhibits organic anion transporters (OATs) has prophylactic or therapeutic efficacy to inhibit RSV replication in three epithelial cell lines used in RSV studies, i.e., Vero E6 cells, HEp-2 cells, and in primary normal human bronchoepithelial (NHBE) cells, and in BALB/c mice. The studies showed that nanomolar concentrations of all probenecid regimens prevent RSV strain A and B replication in vitro and RSV strain A in vivo, representing a potential prophylactic and chemotherapeutic for RSV.
Asunto(s)
COVID-19 , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Animales , Ratones , Probenecid/farmacología , Probenecid/uso terapéutico , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/genética , SARS-CoV-2 , Replicación ViralRESUMEN
Respiratory syncytial virus (RSV) infection causes substantial morbidity and some deaths in the young and elderly worldwide. There is no safe and effective vaccine available, although it is possible to reduce the hospitalization rate for high-risk children by anti-RSV antibody prophylaxis. RSV has been shown to modify the immune response to infection, a feature linked in part to RSV G protein CX3C chemokine mimicry. This study determined if vaccination with G protein polypeptides or peptides spanning the central conserved region of the G protein could induce antibodies that blocked G protein CX3C-CX3CR1 interaction and disease pathogenesis mediated by RSV infection. The results show that mice vaccinated with G protein peptides or polypeptides containing the CX3C motif generate antibodies that inhibit G protein CX3C-CX3CR1 binding and chemotaxis, reduce lung virus titers, and prevent body weight loss and pulmonary inflammation. The results suggest that RSV vaccines that induce antibodies that block G protein CX3C-CX3CR1 interaction may offer a new, safe, and efficacious RSV vaccine strategy.
Asunto(s)
Anticuerpos Antivirales/sangre , Quimiocinas CX3C/metabolismo , Receptores de Quimiocina/metabolismo , Infecciones por Virus Sincitial Respiratorio , Vacunas contra Virus Sincitial Respiratorio , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Antivirales/inmunología , Receptor 1 de Quimiocinas CX3C , Línea Celular , Quimiocinas CX3C/inmunología , Quimiotaxis de Leucocito/inmunología , Femenino , Humanos , Inflamación/inmunología , Inflamación/prevención & control , Pulmón/inmunología , Pulmón/fisiopatología , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Péptidos/síntesis química , Péptidos/química , Péptidos/inmunología , Receptores de Quimiocina/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/fisiopatología , Infecciones por Virus Sincitial Respiratorio/virología , Vacunas contra Virus Sincitial Respiratorio/administración & dosificación , Vacunas contra Virus Sincitial Respiratorio/inmunología , Virus Sincitial Respiratorio Humano/inmunología , Virus Sincitial Respiratorio Humano/patogenicidad , Virus Sincitial Respiratorio Humano/fisiología , Vacunación , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Replicación ViralRESUMEN
Detection of swine influenza virus (SIV) in commercial swine herds is important for understanding the infection status of the herd and for controlling disease. Current molecular diagnostics require that specimens be submitted to a laboratory which provides results to the growers after some time which is generally too late to intercede in disease control. Moreover, current diagnostic assays are time-consuming, typically costly, and require skilled technical expertise. We have instituted a reverse transcription loop-mediated isothermal amplification (RT-LAMP) diagnostic assay based on conserved regions of the SIV matrix (M) gene and H1N1 hemagglutinin (HA) sequences. The RT-LAMP assay was optimized to use both colorimetric and fluorescent endpoints and was validated. The M and HA RT-LAMP assays have a limit-of-detection (LOD) sensitive to 11 and 8-log-fold dilutions of viral RNA, respectively, and are capable of discriminating between H1 and H3 strains of SIV. Additionally, the RT-LAMP assay was optimized for direct amplification of SIV from field samples without the need for viral RNA isolation. The direct RT-LAMP detected >86 % of qRT-PCR validated SIV samples, and >66 % of negative samples when spiked with viral RNA or SIV. The diagnostic RT-LAMP assay is a rapid, sensitive, specific, and cost-effective method for the detection of SIV in herds substantially aiding diagnosis and surveillance.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Transcripción Reversa , Sensibilidad y Especificidad , PorcinosRESUMEN
Tracking the genetic diversity and spread of swine influenza viruses (SIVs) in commercial swine farms is central for control and to reduce the potential emergence of SIV reassortants. We analyzed the diversity of SIVs in nasal washes or oral fluids from commercial swine farms in North Carolina using influenza M qRT-PCR and hemagglutinin (HA) and neuraminidase (NA) subtyping. We found a predominance of H1 HAs and N2 NAs in the samples examined. The majority of the H1 HAs could be further classified into gamma and delta subclusters. We also identified HAs of the H1 alpha cluster, and those of human novel pandemic origin. Glycan binding profiles from a representative subset of these viruses revealed broad α2,6 sialylated glycan recognition, though some strains exhibited the ability to bind to α2,3 sialic acid. These data show that SIV surveillance can aid our understanding of viral transmission dynamics and help uncover the diversity at the human-swine interface.
Asunto(s)
Granjas/estadística & datos numéricos , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Orthomyxoviridae/genética , Enfermedades de los Porcinos/epidemiología , Animales , Variación Genética , Hemaglutininas Virales/genética , Humanos , Medio Oeste de Estados Unidos/epidemiología , Neuraminidasa/genética , Orthomyxoviridae/clasificación , Infecciones por Orthomyxoviridae/transmisión , Filogenia , ARN Viral/genética , Virus Reordenados/genética , Sudeste de Estados Unidos/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Proteínas Virales/genéticaRESUMEN
Swine influenza A virus (IAV) can cause widespread respiratory disease with high morbidity, low mortality, and have a substantial economic impact to the swine industry. Swine infection may contribute to pandemic IAV given their susceptibility to both avian and human IAVs. Currently, three IAV subtypes (H1N1, H3N2 and H1N2) circulate in swine in North America frequently combining gene segments from avian or human viruses. This study investigated the prevalence of IAV in commercial swine herds. A total of 1878 oral fluid samples were collected from pigs of all ages from 201 commercial farms located in North Carolina and South Carolina. Sixty-eight oral fluid samples from 35 farms were positive by MP gene PCR with an overall IAV-positivity of 3.6%. On the herd level, the percentage of IAV positivity was 17.4%. Fifty-six viruses were subtyped, while 12 were partly subtyped or not subtyped at all. Using de novo assembly, complete sequences were obtained for 59 HA genes. The majority of IAVs subtyped had an H1 HA demonstrating a considerable prevalence over H3 viruses. Furthermore, only six out of eleven HA types were detected which has implications for the selection of vaccines used by swine producers in the region.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Epidemiología Molecular , North Carolina/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Filogenia , South Carolina/epidemiología , PorcinosRESUMEN
Carbon dots, generally defined as small carbon nanoparticles with various surface passivation schemes, have emerged as a new class of quantum-dot-like nanomaterials, with their optical properties and photocatalytic functions resembling those typically found in conventional nanoscale semiconductors. In this work, carbon dots were evaluated for their photoinduced bactericidal functions, with the results suggesting that the dots were highly effective in bacteria-killing with visible-light illumination. In fact, the inhibition effect could be observed even simply under ambient room lighting conditions. Mechanistic implications of the results are discussed and so are opportunities in the further development of carbon dots into a new class of effective visible/natural light-responsible bactericidal agents for a variety of bacteria control applications.
Asunto(s)
Puntos Cuánticos , Carbono , Luz , Nanoestructuras , SemiconductoresRESUMEN
Monoclonal antibodies (Mabs) against the Urbani strain of the SARS-associated coronavirus (SARS-CoV) were developed and characterized for reactivity to SARS-CoV and SARS-CoV S, N, M, and E proteins using enzyme-linked immunoabsorbent (ELISA), radioimmunoprecipitation, immunofluorescence, Western Blot and microneutralization assays. Twenty-six mAbs were reactive to SARS-CoV by ELISA, and nine were chosen for detailed characterization. Five mAbs reacted against the S protein, two against the M protein, and one each against the N and E proteins. Two of five S protein mAbs neutralized SARS-CoV infection of Vero E6 cells and reacted to an epitope within amino acids 490-510 in the S protein. While two of the three non-neutralizing antibodies recognized at second epitope within amino acids 270-350. The mAbs characterized should prove useful for developing SARS-CoV diagnostic assays and for studying the biology of infection and pathogenesis of disease.
Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Proteínas Estructurales Virales/inmunología , Animales , Anticuerpos Monoclonales/biosíntesis , Anticuerpos Antivirales/biosíntesis , Línea Celular , Chlorocebus aethiops , Proteínas M de Coronavirus , Proteínas de la Nucleocápside de Coronavirus , Mapeo Epitopo , Humanos , Glicoproteínas de Membrana/inmunología , Pruebas de Neutralización , Proteínas de la Nucleocápside/inmunología , Síndrome Respiratorio Agudo Grave/virología , Glicoproteína de la Espiga del Coronavirus , Células Vero , Proteínas del Envoltorio Viral/inmunología , Proteínas de la Matriz Viral/inmunología , Proteínas ViroporinasRESUMEN
Respiratory tract infections are a leading cause of morbidity and mortality worldwide. Human metapneumovirus (HMPV) is a recently discovered respiratory pathogen of the Paramyxovirus family in the Metapneumovirus genus. HMPV was first isolated from young children in The Netherlands with respiratory illness similar to human respiratory syncytial virus (RSV) infection. Epidemiological data indicates that HMPV co-circulates with RSV in the community. Few immunological tools are available to study the virological features of HMPV infection, thus current studies rely on reverse-transcription (RT) polymerase chain reaction (PCR) for detection. In this study, we examine serological cross-reactivity of RSV, HMPV and other Metapneumovirus members, i.e. avian metapneumovirus (AMPV), and show that polyclonal and monoclonal antibodies reactive to a conserved region in AMPV nucleoprotein (N) cross-react with HMPV N protein, but not with RSV N protein by ELISA, Western blot and immunohistochemical assays. In addition, we show that HMPV infection in the lungs of BALB/c mice can be detected using anti-N protein antibody. These reagents provide new tools and methods for investigating HMPV infection, for differentiating HMPV from RSV infection, and may be useful for characterizing potential links between HMPV with other respiratory complications.
Asunto(s)
Anticuerpos Antivirales/inmunología , Metapneumovirus/inmunología , Metapneumovirus/aislamiento & purificación , Proteínas de la Nucleocápside/inmunología , Infecciones por Paramyxoviridae/diagnóstico , Infecciones del Sistema Respiratorio/diagnóstico , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Virales/análisis , Antígenos Virales/inmunología , Western Blotting , Chlorocebus aethiops , Reacciones Cruzadas , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Pulmón/virología , Ratones , Ratones Endogámicos BALB C , Proteínas de la Nucleocápside/análisis , ARN Viral/aislamiento & purificación , Virus Sincitial Respiratorio Humano/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células VeroRESUMEN
Respiratory syncytial virus (RSV) is a primary cause of severe lower respiratory tract disease in infants, young children, and the elderly worldwide, and despite decades of effort, there remains no safe and effective vaccine. RSV modifies the host immune response during infection by CX3C chemokine mimicry adversely affecting pulmonary leukocyte chemotaxis and CX3CR1+ RSV-specific T-cell responses. In this study we investigated whether immunization of mice with RSV G protein polypeptides from strain A2 could induce antibodies that block G protein-CX3CR1 interactions of both RSV A and B strains. The results show that mice immunized with RSV A2 G polypeptides generate antibodies that block binding of RSV A2 and B1 native G proteins to CX3CR1, and that these antibodies effectively cross-neutralize both A and B strains of RSV. These findings suggest that vaccines that induce RSV G protein-CX3CR1 blocking antibodies may provide a disease intervention strategy in the efforts to develop safe and efficacious RSV vaccines.
Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Quimiocinas CX3C/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Quimiocina/metabolismo , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales de Fusión/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Receptor 1 de Quimiocinas CX3C , Línea Celular , Reacciones Cruzadas , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/clasificación , Vacunación , Proteínas Virales de Fusión/administración & dosificaciónRESUMEN
Avian influenza viruses (AIV) are an important emerging threat to public health. It is thought that sialic acid (sia) receptors are barriers in cross-species transmission where the binding preferences of AIV and human influenza viruses are sias α2,3 versus α2,6, respectively. In this study, we show that a normal fully differentiated, primary human bronchial epithelial cell model is readily infected by low pathogenic H5N1, H5N2 and H5N3 AIV, which primarily bind to sia α2,3 moieties, and replicate in these cells independent of specific sias on the cell surface. NHBE cells treated with neuraminidase prior to infection are infected by AIV despite removal of sia α2,3 moieties. Following AIV infection, higher levels of IP-10 and RANTES are secreted compared to human influenza virus infection, indicating differential chemokine expression patterns, a feature that may contribute to differences in disease pathogenesis between avian and human influenza virus infections in humans.
Asunto(s)
Aves/virología , Bronquios/patología , Células Epiteliales/virología , Virus de la Influenza A/fisiología , Gripe Aviar/virología , Gripe Humana/virología , Ácido N-Acetilneuramínico/metabolismo , Adolescente , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Quimiocinas/metabolismo , Cilios/efectos de los fármacos , Cilios/metabolismo , Cilios/patología , Perros , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Células Caliciformes/efectos de los fármacos , Células Caliciformes/metabolismo , Células Caliciformes/patología , Humanos , Virus de la Influenza A/efectos de los fármacos , Gripe Aviar/patología , Gripe Humana/patología , Masculino , Neuraminidasa/farmacología , Receptores de Superficie Celular/metabolismo , Replicación Viral/efectos de los fármacos , Replicación Viral/fisiología , Esparcimiento de Virus/efectos de los fármacos , Esparcimiento de Virus/fisiologíaRESUMEN
Respiratory syncytial virus (RSV) is a common cause of repeat infections throughout life and potentially severe lower respiratory tract illness in infants, young children, and the elderly. RSV proteins have been shown to contribute to immune evasion by several means, including modification of cytokine and chemokine responses whose expression is negatively regulated by suppressor of cytokine signaling (SOCS) proteins. In this study, we examine the role of SOCS1 and SOCS3 regulation of the type I interferon (IFN) response in normal fully-differentiated human bronchial epithelial cells infected with RSV or with an RSV mutant virus lacking the G gene. The results show that RSV G protein modulates SOCS expression to inhibit type I IFN and interferon-stimulated gene (ISG)-15 expression very early as well as late in infection, and that SOCS induction is linked to toll-like receptor (TLR) signaling by RSV F protein, as indicated by interferon-regulatory factor (IRF)-3 activation and nuclear translocation. These findings indicate that RSV surface proteins signal through the TLR pathway, suggesting that this may be an important mechanism to reduce type I IFN expression to aid virus replication.
Asunto(s)
Interferón-alfa/biosíntesis , Interferón beta/biosíntesis , Infecciones por Virus Sincitial Respiratorio/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Receptores Toll-Like/metabolismo , Línea Celular , Citocinas/biosíntesis , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Humanos , Factor 3 Regulador del Interferón/biosíntesis , Factor 3 Regulador del Interferón/inmunología , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Proteína 1 Supresora de la Señalización de Citocinas , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/inmunología , Receptores Toll-Like/inmunología , Activación Transcripcional , Ubiquitinas/biosíntesis , Ubiquitinas/inmunología , Proteínas Virales de Fusión/fisiología , Replicación ViralRESUMEN
Interactions between fractalkine (CX3CL1) and its receptor, CX3CR1, mediate leukocyte adhesion, activation, and trafficking. The respiratory syncytial virus (RSV) G protein has a CX3C chemokine motif that can bind CX3CR1 and modify CXCL1-mediated responses. In this study, we show that expression of the RSV G protein or the G protein CX3C motif during infection is associated with reduced CX3CR1+ T cell trafficking to the lung, reduced frequencies of RSV-specific, MHC class I-restricted IFN-gamma-expressing cells, and lower numbers of IL-4- and CX3CL1-expressing cells. In addition, we show that CX3CR1+ cells constitute a major component of the cytotoxic response to RSV infection. These results suggest that G protein and the G protein CX3C motif reduce the antiviral T cell response to RSV infection.
Asunto(s)
Secuencias de Aminoácidos , Quimiocinas CX3C/genética , Receptores de Quimiocina/biosíntesis , Virus Sincitiales Respiratorios/inmunología , Linfocitos T/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Receptor 1 de Quimiocinas CX3C , Inhibición de Migración Celular , Movimiento Celular/inmunología , Células Cultivadas , Quimiocinas CX3C/biosíntesis , Femenino , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-4/metabolismo , Pulmón/inmunología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , Receptores de Quimiocina/antagonistas & inhibidores , Virus Sincitiales Respiratorios/genética , Linfocitos T/metabolismo , Linfocitos T/patología , Linfocitos T/virología , Proteínas del Envoltorio Viral/biosíntesis , Proteínas del Envoltorio Viral/genéticaRESUMEN
Vaccination with formalin-inactivated respiratory syncytial virus (FI-RSV) vaccine or RSV G glycoprotein results in enhanced pulmonary disease after live RSV infection. Enhanced pulmonary disease is characterized by pulmonary eosinophilia and is associated with a substantial inflammatory response. We show that the absence of the G glycoprotein or G glycoprotein CX3C motif during FI-RSV vaccination or RSV challenge of FI-RSV-vaccinated mice, or treatment with anti-substance P or anti-CX3CR1 antibodies, reduces or eliminates enhanced pulmonary disease, modifies T-cell receptor Vbeta usage, and alters CC and CXC chemokine expression. These data suggest that the G glycoprotein, and in particular the G glycoprotein CX3C motif, is key in the enhanced inflammatory response to FI-RSV vaccination, possibly through the induction of substance P.
Asunto(s)
Quimiocinas CX3C/metabolismo , Proteínas de la Membrana , Eosinofilia Pulmonar/etiología , Receptores de Quimiocina/metabolismo , Virus Sincitiales Respiratorios/inmunología , Sustancia P/biosíntesis , Proteínas Virales/fisiología , Vacunas Virales/toxicidad , Secuencias de Aminoácidos , Animales , Linfocitos T CD4-Positivos/inmunología , Receptor 1 de Quimiocinas CX3C , Movimiento Celular , Quimiocinas/genética , Femenino , Formaldehído , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/análisis , Receptores de Antígenos de Linfocitos T alfa-beta/fisiología , Vacunación/efectos adversos , Vacunas de Productos Inactivados/toxicidad , Proteínas Virales/químicaRESUMEN
The role of strain differences in respiratory syncytial virus (RSV) disease has not been clearly defined. To investigate the possibility that strain differences contribute to susceptibility to repeat infections, we developed assays to detect antibodies to the two variable regions of the RSV G protein by cloning and expressing the internal variable region at amino acids (aa) 60 to 172 (g1) and the carboxy-terminal variable region at aa 193 to the carboxy terminus (g2) from different genotypes of RSV. The purified proteins were covalently linked to beads with different proportions of red and orange fluorescent dyes and reacted against serum specimens. Antibody reacting against the differently colored beads, and thus against different G polypeptides, was detected by use of flow cytometry and the Luminex system. This assay system detected group- and, to some extent, genotype-specific responses to RSV infection and can be used to investigate the role of strain differences in RSV disease.
Asunto(s)
Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Péptidos/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Preescolar , Humanos , Lactante , Ratones , Ratones Endogámicos BALB C , Infecciones por Virus Sincitial Respiratorio/sangre , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/inmunología , Vacunas Atenuadas , Vacunas Virales/inmunologíaRESUMEN
Respiratory syncytial virus (RSV) infection in the neonate can alter respiratory rates, i.e., lead to episodes of apnea. We show that RSV G glycoprotein reduces respiratory rates associated with the induction of substance P (SP) and G glycoprotein-CX3CR1 interaction, an effect that is inhibited by treatment with anti-G glycoprotein, anti-SP, or anti-CX3CR1 monoclonal antibodies. These data suggest new approaches for treating some aspects of RSV disease.